
9. Fermionic integrals

9.1. Bosons and fermions. In physics there exist two kinds of par-
ticles – bosons and fermions. So far we have dealt with bosons only,
but many important particles are fermions: e.g., electron, proton, etc.
Thus it is important to adapt our techniques to the fermionic case.

In quantum theory, the difference between bosons and fermions is as
follows: if the space of states of a single particle is H then the space of
states of the system of k such particles is SkH for bosons and ΛkH for
fermions. In particular, in the fermionic case, if dimH = n then the
space of states of ≥ n+ 1 identical particles is zero, which is the Pauli
exclusion principle (leading, for instance, to the fact that the number
of electrons in an atom at the m-th energy level is bounded by 2m2). In
classical theory, this means that the space of states of a bosonic particle
is a usual real vector space (or, more generally, a manifold), while for
a fermionic particle it is an odd vector space. Mathematically “odd”
means that the algebra of smooth functions on this space (i.e. the
algebra of classical observables) is an exterior algebra (unlike the case
of a usual, even space, for which the algebra of polynomial functions is
a symmetric algebra).

More generally, one may consider systems of classical particles or
fields some of which are bosonic and some fermionic. In this case, the
space of states will be a supervector space, i.e. the direct sum of an
even and an odd space (or, more generally, a supermanifold – a notion
we will define below).

When such a theory is quantized using the path integral approach,
one has to integrate functions over supermanifolds. Thus, we should
learn to integrate over supermanifolds and then generalize to this case
our Feynman diagram techniques. This is what we do in this section.

9.2. Supervector spaces. Let k be a field of characteristic zero. A
supervector space (or shortly, superspace) over k is just a Z/2-graded
vector space: V = V0 ⊕ V1. If V0 = kn and V1 = km then V is
denoted by kn|m. The notions of a linear operator, direct sum, tensor
product, dual space for supervector spaces are defined in the same way
as for Z/2-graded vector spaces. In other words, the tensor category
of supervector spaces is the same as that of Z/2-graded vector spaces.

However, the notions of a supervector space and a Z/2-graded vector
space are not the same. The difference is as follows. The category of
vector (and hence Z/2-graded vector) spaces has a symmetric structure,
which is the standard isomorphism V ⊗W → W ⊗ V (given by v ⊗
w → w⊗ v). This isomorphism allows one to define symmetric powers
SiV , exterior powers ΛiV , etc. For supervector spaces, there is also
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a symmetry V ⊗W → W ⊗ V , but it is defined differently. Namely,
v ⊗ w goes to (−1)ijw ⊗ v, v ∈ Vi, w ∈ Vj (i, j ∈ {0, 1}). In other
words, it is the same as usual except that if v, w are both odd then
v ⊗ w 7→ −w ⊗ v. As a result, we can define the superspaces SiV and
ΛiV for a superspace V , but they are not the same as the symmetric
and exterior powers in the usual sense. For example, if V is purely
odd (V = V1), then SiV is the i-th exterior power of V , and ΛiV is
the i-th symmetric power of V (purely even for even i and purely odd
for odd i). Thus in general for V = V0 ⊕ V1, we have the following
expressions for the symmetric algebra SV := ⊕i≥0S

iV and exterior
algebra ΛV := ⊕i≥0ΛiV :

SV = SV0 ⊗ ΛV1, ΛV = ΛV0 ⊗ SV1.

For a superspace V , let ΠV be the same space with opposite parity,
i.e. (ΠV )j = V1−j, j = 0, 1. Then we have

SiV = Πi(ΛiΠV ), ΛiV = Πi(SiΠV ).

Let V = V0 ⊕ V1 be a finite dimensional superspace. Define the
algebra of polynomial functions on V , O(V ), to be the algebra SV ∗

(where symmetric powers are taken in the supersense). Thus, O(V ) =
SV ∗0 ⊗ΛV ∗1 , where V0 and V1 are regarded as usual spaces. More explic-
itly, if x1, ..., xn are linear coordinates on V0, and ξ1, ..., ξm are linear
coordinates on V1, then O(V ) = k[x1, ..., xn, ξ1, ..., ξm], with defining
relations

xixj = xjxi, xiξr = ξrxi, ξrξs = −ξsξr
(in particular, ξ2

r = 0). Note that this algebra is itself a (generally,
infinite dimensional) supervector space, and is commutative in the
supersense. Also, if V,W are two superspaces, then O(V ⊕ W ) =
O(V ) ⊗O(W ), where the tensor product of algebras is understood in
the supersense, i.e.

(a⊗ b)(c⊗ d) = (−1)p(b)p(c)(ac⊗ bd),

where p(x) is the parity of x.

9.3. Supermanifolds. Now assume that k = R. Then by analogy
with the above for any supervector space V we can define the algebra
of smooth functions, C∞(V ) := C∞(V0)⊗ΛV ∗1 . In fact, this is a special
case of the following more general setting.

Definition 9.1. A supermanifold M is a usual manifold M0 with a
sheaf C∞M of Z/2Z graded algebras (called the structure sheaf), which
is locally isomorphic to C∞M0

⊗ Λ(ξ1, ..., ξm).
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The manifold M0 is called the reduced manifold of M . The dimension
of M is the pair of integers dimM0|m.

For example, a supervector space V is a supermanifold of dimension
dimV0| dimV1. Another (more general) example of a supermanifold is
a superdomain U := U0 × V1, i.e. a domain U0 ⊂ V0 together with the
sheaf C∞U0

⊗ ΛV ∗1 . Moreover, the definition of a supermanifold implies
that any supermanifold is “locally isomorphic” to a superdomain.

Let M be a supermanifold. An open set U in M is the supermanifold
(U0, C∞M |U0), where U0 is an open subset in M0.

By the definition, supermanifolds form a category S. Let us describe
explicitly morphisms in this category, i.e. maps F : M → N between
supermanifolds M and N . By the definition, it suffices to assume that
M,N are superdomains, with global coordinates x1, ..., xn, ξ1, ..., ξm,
and y1, ..., yp, η1, ..., ηq, respectively (here xi, yi are even variables, and
ξi, ηi are odd variables). Then the map F is defined by the formulas:

yi = f0,i(x1, ..., xn) + f j1j22,i (x1, ..., xn)ξj1ξj2 + ...,

ηi = aj1,i(x1, ..., xn)ξj + aj1j2j33,i (x1, ..., xn)ξj1ξj2ξj3 + ...,

where f0,i, f
j1j2
2,i , ..., a

j
1,i, a

j1j2j3
3,i , ... are usual smooth functions, and we

assume summation over repeated indices. These formulas, determine
F completely, since for any g ∈ C∞(N) one can find g ◦ F ∈ C∞(M)
by Taylor’s formula. For example, if M = N = R1|2, F (x, ξ1, ξ2) =
(x+ ξ1ξ2, ξ1, ξ2), and g = g(x), then

g ◦ F (x, ξ1, ξ2) = g(x+ ξ1ξ2) = g(x) + g′(x)ξ1ξ2.

9.4. Supermanifolds and vector bundles. Let M0 be a manifold,
and E be a real vector bundle on M0. Then we can define the super-
manifold M := Tot(ΠE), the total space of E with changed parity.
Namely, the reduced manifold of M is M0, and the structure sheaf C∞M
is the sheaf of sections of ΛE∗. This defines a functor S : B → S,
from the category of manifolds with vector bundles to the category of
supermanifolds. We also have a functor S∗ in the opposite direction:
namely, S∗(M) is the manifold M0 with the vector bundle (R/R2)∗,
where R is the nilpotent radical of C∞M .

The following proposition (whose proof we leave as an exercise) gives
a classification of supermanifolds.

Proposition 9.2. (i) S∗ ◦ S = Id;
(ii) S ◦ S∗ = Id on isomorphism classes of objects.

The usefulness of this proposition is limited by the fact that, as one
can see from the above description of maps between supermanifolds,
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S ◦S∗ is not the identity on morphisms (e.g. it maps the automorphism
x → x + ξ1ξ2 of R1|2 to Id), and hence, S is not an equivalence of
categories. In fact, the category of supermanifolds is not equivalent to
the category of manifolds with vector bundles (namely, the category of
supermanifolds “has more morphisms”).

Remark 9.3. 1. The relationship between these two categories is quite
similar to the relationship between the categories of (finite dimensional)
filtered and graded vector spaces, respectively (namely, for them we also
have functors S, S∗ with the same properties – check it!). Therefore in
supergeometry, it is better to avoid using realizations of supermanifolds
as S(M0, E), similarly to how in linear algebra it is better to avoid
choosing a splitting of a filtered space.

2. In the definition of a supermanifold one can replace the real
exterior algebra Λ(ξ1, ..., ξm) with the complexified exterior algebra
ΛC(ξ1, ..., ξm). This gives a notion of a C-supermanifold, which gen-
eralizes the notion of an ordinary smooth manifold with the sheaf of
complex-valued (as opposed to real-valued) smooth functions. Simi-
larly to Proposition 9.2, isomorphism classes of C-supermanifolds with
reduced submanifolds M0 are in bijection with isomorphism classes of
complex vector bundles on M0, so they are more general (as not every
complex vector bundle is the complexification of a real one). Otherwise,
the theory of C-supermanifolds (which does actually arise in quantum
field theory, see Remark 11.3 below) is completely parallel to the theory
of usual supermanifolds.

One may also similarly define complex analytic and algebraic super-
manifolds, but this is a different story which we will not discuss here.

9.5. Supertrace and superdeterminant (Berezinian). Before pro-
ceeding further, we need to generalize to the supercase the basic notions
of linear algebra, such as trace and determinant of a matrix.

Let R := R0 ⊕ R1 be a supercommutative C-algebra. Fix two non-
negative integers m,n. Let Matn|m(R) be the algebra of n+m by n+m
matrices over R which have the block decomposition

A =

(
A00 A01

A10 A11

)
so that A00 is n by n, A11 is m by m, and A00, A11 have even entries
(i.e., in R0), while A01, A10 have odd entries (i.e., in R1). We would
like to define the supertrace of A as a linear function

sTr(A) =
n+m∑
i,j=1

λijaij, λij ∈ Z,
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so that sTr

(
1 0
0 0

)
= n and sTr(AB) = sTr(BA) for any R and A,B ∈

Matn|m(R). Thus we must have sTr(A) = Tr(A00) + εTr(A11) for some
ε ∈ Z, and taking all blocks of A,B except A01, B10 to be zero, we get
ε = −1. So the supertrace of A has to be defined by the formula

sTr(A) = Tr(A00)− Tr(A11).

Now let us generalize to the supercase the definition of determinant.
For a finite dimensional algebra R and C ∈ Matn|m(R) we would like
to have

(9.1) sdet(eC) = esTrC = eTr(C00)−Tr(C11),

which generalizes the usual property of trace and determinant. So in
the case of a block-diagonal matrix C = C00 ⊕ C11 we get

sdet(eC) =
det(eC00)

det(eC11)
.

Thus if A = A00 ⊕ A11 is block-diagonal, we must have

sdetA =
detA00

detA11

.

This shows that we cannot hope that the superdeterminant will be a
polynomial in the entries of A – it has to be a rational function defined
only on some open subset. In fact, if we want to have the usual property
sdet(AB) = sdet(A)sdet(B) then there is just one possibility. Indeed,
suppose that

A =

(
1 b
0 1

)(
a+ 0
0 a−

)(
1 0
c 1

)
=

(
a+ + ba−c ba−

a−c a−

)
.

By (9.1), we must have

sdet

(
1 b
0 1

)
= sdet

(
1 0
c 1

)
= 1,

hence

sdet(A) =
det a+

det a−
.

In other words, the superdeterminant has to be defined by the formula

sdet(A) =
det(A00 − A01A

−1
11 A10)

det(A11)

provided that A11 is invertible; otherwise the superdeterminant is not
defined.
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This function is also called the Berezinian of A and denoted Ber(A).
So for m = 0 one has Ber(A) = det(A), and for n = 0 one has Ber(A) =
(detA)−1.

Remark 9.4. Recall for comparison that if A is a purely even block
matrix then

det(A) = det(A00 − A01A
−1
11 A10) det(A11).

Proposition 9.5. (i) For any A,B ∈ Matn|m(R) with A11, B11 invert-
ible, we have

Ber(AB) = Ber(A)Ber(B).

(ii) If R is finite dimensional and A(t) ∈ Matn|m(R) is a C1-function
near 0 with A(0) invertible then

d
dt
|t=0Ber(A(t)) = sTr(A′(0)A(0)−1)Ber(A(0)).

(iii) If R is finite dimensional then for any C ∈ Matn|m(R) we have

Ber(eC) = esTrC .

Proof. (i) From the triangular factorization, it is clear that it suffices
to consider the case

A =

(
1 0
X 1

)
, B =

(
1 Y
0 1

)
,

where X, Y are matrices with odd elements, so that

AB =

(
1 Y
X 1 +XY

)
.

Then the required identity is

det(1− Y (1 +XY )−1X) = det(1 +XY ).

To prove this identity, recall that X : V0 → V1⊗R and Y : V1 → V0⊗R.
We have

det(1− Y (1 +XY )−1X) =
∑
k≥0

(−1)kTr(Y (1 +XY )−1X|ΛkV0
) =

=
∑
k≥0

(−1)ksTr(Y (1 +XY )−1|ΛkV1
◦X|ΛkV0

) =
∑
k≥0

(−1)ksTr(XY (1 +XY )−1|ΛkV1
)

∑
k≥0

Tr(XY (1 +XY )−1|SkΠV1
) = det(1−XY (1 +XY )−1)−1 = det(1 +XY ).

(ii) By (i) we may replace A(t) by A(t)A(0)−1, so it suffices to con-
sider the case A(0) = 1, where the statement easily follows from the
definition.

(iii) Consider the function f(t) := Ber(eCt). By (ii) it satisfies the
differential equation f ′(t) = sTr(C)f(t) with f(0) = 1. Thus f(t) =
esTr(C)t, and the statement follows by setting t = 1. �
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9.6. Integration on superdomains. We would now like to develop
integration theory on supermanifolds. Before doing so, let us recall how
it is done for usual manifolds. In this case, one proceeds as follows.

1. Define integration of compactly supported (say, smooth) functions
on a domain in Rn.

2. Find the transformation formula for the integral under change of
coordinates (i.e. discover the factor |J |, where J is the Jacobian).

3. Define a density on a manifold to be a quantity which is locally
the same as a function, but multiplies by |J | under coordinate change
(unlike true functions, which don’t multiply by anything). Then de-
fine integral of compactly supported densities on the manifold using
partitions of unity. The independence of the integral on the choices is
guaranteed by the change of variable formula and the definition of a
density.

We will now realize this program for supermanifolds. We start with
defining integration over superdomains.

Let V = V0 ⊕ V1 be a supervector space. The Berezinian of V is the
line ΛtopV ∗0 ⊗ΛtopV1 (where V0, V1 are treated as usual spaces). Suppose
that V is equipped with a nonzero element dv of its Berezinian (called
a supervolume element).

Let U0 be an open set in V0, and f ∈ C∞(U0)⊗ΛV ∗1 be a compactly
supported smooth function on the superdomain U := U0×V1 (i.e. f =∑
fi ⊗ ωi, fi ∈ C∞(U0), ωi ∈ ΛV ∗1 , and fi are compactly supported).

Let dv0, dv1 be volume forms on V0, V1 such that dv = dv0/dv1.

Definition 9.6. The integral
∫
U
f(v)dv is

∫
U0

(f(v), (dv1)−1)dv0.

It is clear that this quantity depends only on dv and not on dv0 and
dv1 separately.

Thus,
∫
U
f(v)dv is defined as the integral of the suitably normalized

top coefficient of f (expanded with respect to some homogeneous basis
of ΛV ∗1 ). To write it in coordinates, let x1, ..., xn, ξ1, ..., ξm be a linear
system of coordinates on V such that dv = dx1...dxn

dξ1...dξm
(such coordinate

systems will be called unimodular with respect to dv). Then
∫
U
f(v)dv

equals
∫
U0
ftop(x1, ..., xn)dx1...dxn, where ftop is the coefficient of ξ1...ξm

in the expansion of f .

9.7. Berezin’s change of variable formula. Let V be a vector
space, f ∈ ΛV ∗, v ∈ V . Denote by ∂f

∂v
the result of contraction of

f with v.
Let U,U ′ be superdomains, and F : U → U ′ be a morphism. As

explained above, given linear coordinates x1, ..., xn, ξ1, ..., ξm on U and
y1, ..., yp, η1, ..., ηq on U ′, we can describe F by expressing yi and ηj as
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functions of xi and ξj. Define the Berezin matrix of F , A := DF (x, ξ)
by the formulas:

A00 = ( ∂yi
∂xk

), A01 = (∂yi
∂ξ`

), A10 = (
∂ηj
∂xk

), A11 = (
∂ηj
∂ξ`

).

Clearly, this is a superanalog of the Jacobi matrix.
The main theorem of supercalculus is the following theorem.

Theorem 9.7. (Berezin) Let g be a smooth function with compact
support on U ′, and F : U → U ′ be an isomorphism. Let dv, dv′ be
supervolume elements on U,U ′. Then∫

U ′
g(v′)dv′ =

∫
U

g(F (v))|Ber(DF (v))|dv,

where the Berezinian is computed with respect to unimodular coordinate
systems.

Here if f(ξ) = a+terms containing ξj, a ∈ R, a 6= 0 then by definition
|f(ξ)| := f(ξ) is a > 0 and |f(ξ)| := −f(ξ) if a < 0.

Proof. The chain rule of the usual calculus extends verbatim to su-
percalculus. Thus, since Ber(AB) = Ber(A)Ber(B), if we know the
statement for two isomorphisms F1 : U2 → U1 and F2 : U3 → U2, then
we know it for the composition F1 ◦ F2.

Let F (x1, ..., xn, ξ1, ..., ξm) = (x′1, ..., x
′
n, ξ
′
1, ..., ξ

′
m). We see that it

suffices to consider the following cases.
1. x′i depend only on xk, k = 1, ..., n, and ξ′j = ξj.
2. x′i = xi + zi, where zi lie in the ideal generated by ξj, and ξ′j = ξj.
3. x′i = xi.
Indeed, it is clear that any isomorphism F is a composition of iso-

morphisms of types 1, 2, 3.
In case 1, the statement of the theorem follows from the usual change

of variable formula. Thus it suffices to consider cases 2 and 3.
In case 2, it is sufficient to consider the case when only one coordinate

is changed by F , i.e. x′1 = x1 + z, and x′i = xi for i ≥ 2. In this case
we have to show that the integral of

g(x1 + z, x2, ..., xn, ξ)(1 + ∂z
∂x1

)− g(x1, x2, ..., xn, ξ)

is zero. But this follows easily upon expansion in powers of z, since all
the terms are manifestly total derivatives with respect to x1.

In case 3, we can also assume ξ′j = ξj, j ≥ 2, and a similar (actually,
even simpler) argument proves the result. �
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9.8. Integration on supermanifolds. Now we will define densities
on supermanifolds. Let M be a supermanifold, and {Uα} be an open
cover of M together with isomorphisms fα : Uα → U ′α , where U ′α
is a superdomain in Rn|m. Let gαβ : fβ(Uα ∩ Uβ) → fα(Uα ∩ Uβ)
be the transition map fαf

−1
β . Then a density s on M is a choice of

an element sα ∈ C∞M (Uα) for each α, such that on Uα ∩ Uβ one has
sβ(z) = sα(z)|Ber(gαβ)(fβ(z))|.

Remark 9.8. It is clear that a density on M is a global section of a
certain sheaf on M , called the sheaf of densities.

Now, for any (compactly supported) density ω on M , the integral∫
M
ω is well defined. Namely, it is defined as in usual calculus: one

uses a partition of unity φα such that Suppφα ⊂ (Uα)0 are compact
subsets, and sets

∫
M
ω :=

∑
α

∫
M
φαω (where the summands can be

defined using fα). Berezin’s theorem guarantees then that the final
answer will be independent on the choices made.

9.9. Gaussian integrals in an odd space. Now let us generalize to
the odd case the theory of Gaussian integrals, which was, in the even
case, the basis for the path integral approach to quantum mechanics
and field theory.

Recall first the notion of Pfaffian. Let A be a skew-symmetric matrix
of even size. Then the determinant of A is the square of a polynomial in
the entries of A. This polynomial is determined by this condition up to
sign. The sign is usually fixed by requiring that the polynomial should

be 1 for the direct sum of matrices

(
0 1
−1 0

)
. With this convention, this

polynomial is called the Pfaffian of A and denoted PfA. The Pfaffian
obviously has the property Pf(XTAX) = Pf(A) det(X) for any matrix
X.

Let now V be a 2m-dimensional vector space with a volume element
dv, and B a skew-symmetric bilinear form on V . We define the Pfaffian
PfB of B to be the Pfaffian of the matrix of B in any unimodular basis
(by the above transformation formula, it does not depend on the choice
of the basis). It is easy to see (by reducing B to the canonical form)
that

ΛmB

m!
= Pf(B)dv.

In terms of matrices, this translates into the following (well known)
formula for the Pfaffian of a skew symmetric matrix of size 2m:

Pf(A) =
∑
σ∈Πm

εσ
∏

i∈{1,...,2m},i<σ(i)

aiσ(i),
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where Πm is the set of matchings of {1, ..., 2m}, and εσ is the sign of the
permutation sending 1, ..., 2m to i1, σ(i1), ..., im, σ(im) (where ir < σ(ir)
for all r). For example, for m = 2 (i.e. a 4 by 4 matrix),

Pf(A) = a12a34 + a14a23 − a13a24.

Now consider an odd vector space V of dimension 2m with a vol-
ume element dξ. Let B be a symmetric bilinear form on V (i.e. a
skewsymmetric form on ΠV ). Let ξ1, ..., ξ2m be unimodular linear co-
ordinates on V (i.e. dξ = dξ1 ∧ ... ∧ dξ2m). So if ξ = (ξ1, ..., ξ2m) then
B(ξ, ξ) =

∑
i,j bijξiξj, where bij is a skewsymmetric matrix.

Proposition 9.9. ∫
V

e
1
2
B(ξ,ξ)(dξ)−1 = Pf(B).

Proof. The integral equals 1
m!
∧mB
dξ

, which is precisely Pf(B). �

This formula has the following important special case. Let Y be
a finite dimensional odd vector space, and V = Y ⊕ Y ∗. The space
Y has a canonical volume element dv = dydy∗, defined as follows: if
e1, ..., em is a basis of Y and e∗1, ..., e

∗
m is the dual basis of Y ∗ then

dydy∗ = e1 ∧ e∗1 ∧ ... ∧ en ∧ e∗n.
Let A : Y → Y be a linear operator. Then we can define an even

smooth function S on the odd space Y as follows: S(y, y∗) = (Ay, y∗).
More explicitly, if ξi are coordinates on Y corresponding to the basis
ei, and ηi the dual system of coordinates on Y ∗, then

S(ξ1, ..., ξm, η1, ..., ηm) =
∑
i,j

aijξjηi,

where (aij) is the matrix of A in the basis ei.

Proposition 9.10.∫
V

eS(dv)−1 = (−1)
n(n−1)

2 detA.

Proof. We have S(y, y∗) = 1
2
B((y, y∗), (y, y∗)), where B is the skewsym-

metric form on ΠV given by the formula

B((y, y∗), (w,w∗)) = (Ay,w∗)− (Aw, y∗).

It is easy to see that Pf(B) = (−1)
n(n−1)

2 det(A), so Proposition 9.10
follows from Proposition 9.9.

Another proof can be obtained by direct evaluation of the top coef-
ficient. �
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9.10. The Wick formula in the odd case. Let V be a 2m-dimensional
odd space with a volume form dξ, and B ∈ S2V ∗ a non-degenerate form
(symmetric in the supersense and antisymmetric in the usual sense).
Let λ1, ..., λn be linear functions on V . Then λ1, ..., λn can be regarded
as odd smooth functions on the superspace V .

Theorem 9.11.∫
V

λ1(ξ)...λn(ξ)e−
1
2
B(ξ,ξ)(dξ)−1 = Pf(−B)Pf(B−1(λi, λj)).

(By definition, this is zero if n is odd). In other words, we have:∫
V

λ1(ξ)...λn(ξ)e−
1
2
B(ξ,ξ)(dξ)−1 =

Pf(−B)
∑
σ∈Πm

εσ
∏

i∈{1,...,2m},i<σ(i)

B−1(λi, λσ(i)).

Proof. We prove the second formula. Choose a basis ei of V with
respect to which the form B is standard: B(ej, el) = 1 if j = 2i−1, l =
2i, and B(ej, el) = 0 for other pairs j < l. Since both sides of the
formula are polylinear with respect to λ1, ..., λn, it suffices to check it
if λ1 = e∗i1 ,..., λn = e∗in . This is easily done by direct computation (in
the sum on the right hand side, only one term may be nonzero). �

Exercise 9.12. Let Y = R
n(n+1)

2
+
m(m−1)

2
|mn be the real superspace of

matrices

A =

(
A00 A01

A10 A11

)
(where A00 is n by n and A11 is m by m) which are symmetric in
the supersense, i.e., A00 is symmetric, A11 is skew-symmetric, and
AT01 = A10. Let Y+ ⊂ Y be the superdomain of those matrices for which
A00 > 0. Let dA be a supervolume element on Y . Let f be a compactly
supported smooth function on Y+. Show that∫

Y+×Rn|m
f(A)e−x

TA00x−2xTA01ξ−ξTA11ξdAdx(dξ)−1 =

= C

∫
Y+

f(A)Ber(A)−1/2dA.

(C is a constant). What is C?

Exercise 9.13. Prove the Amitsur-Levitzki identity: if X1, ..., X2n are
n by n matrices over a commutative ring, then∑

σ∈S2n

(−1)σXσ(1)...Xσ(2n) = 0.
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Hint. (a) Show that for any n by n matrix X with anticommuting
entries, X2n = 0 (namely, show that traces of X2k vanish for all positive
k, then use the Cayley-Hamilton theorem for X2).

(b) Apply this to X =
∑2n

i=1Xiξi, where ξi are anticommuting vari-
ables.
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