
11. Free field theories in higher dimensions

11.1. Minkowski and Euclidean space. Now we pass from quan-
tum mechanics to quantum field theory in dimensions d ≥ 1. As we
explained above, we have two main settings.

1. Minkowski space. Fields are functions on a spacetime V = VM ,
which is a real inner product space of signature (1, d−1). This is where
physical processes actually “take place”. The symmetry group of V ,
G = SO(1, d− 1), is called the Lorentz group; it is the group of trans-
formations of spacetime in special relativity. Therefore, field theories
in Minkowski space which are in an appropriate sense “compatible”
with the action of G are called relativistic.

Recall some standard facts and definitions. The light cone in V is
the cone described by the equation |v|2 = 0, where |v|2 := (v,v).
Vectors belonging to the light cone are called lightlike. The light cone
divides the space V into spacelike vectors |v|2 < 0 (outside the cone),
and timelike vectors |v|2 > 0 (inside the cone). We will choose one of
the two components of the interior of the cone and call it positive; it
will be denoted by V+. The opposite (negative) component is denoted
by V−. The group of g ∈ SO(V ) = SO(1, d − 1) which preserve V+ is
denoted by SO+(1, d−1); it is the connected component of the identity
of the group SO(1, d− 1) (which has two connected components).

Often (e.g. when doing Hamiltonian field theory) it is necessary to
split V in an orthogonal direct sum V = Vs ⊕ R of space and time.
In this decomposition, the space Vs is required to be spacelike (i.e.
negative definite), which implies that the time axis R has to be timelike
(positive definite). Note that such a splitting is not unique, and that
fixing it breaks the Lorentz symmetry SO+(1, d−1) down to the usual
rotation group SO(d− 1).

To do explicit calculations, one further chooses Cartesian coordinates
x1, ..., xd−1 on Vs and t on the time axis R, so that v = (t, x1, ..., xd−1).
In these coordinates the inner product takes the form

|v|2 = c2t2 −
d−1∑
j=1

x2
j

where c is the speed of light. This explains the origin of the term
“light cone” – it consists of worldlines of free photons (particles of light)
traveling in space in some direction at speed c. To simplify notation,
we will chose units of measurement so that c = 1.

2. Euclidean space. Fields are functions on a spacetime VE, which
is a positive definite inner product space. It plays an auxiliary role and
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has no direct physical meaning, although path integrals computed in
this space are similar to expectation values in statistical mechanics.

The two settings are related by the “Wick rotation”. Namely the
Euclidean space VE corresponding to the Minkowski space VM is the
real subspace in (VM)C consisting of vectors (it, x1, ..., xd−1), where t
and xj are real. In other words, to pass to the Euclidean space, one
needs to make a change of variable t 7→ it. Note that under this change,
the standard metric on the Minkowski space, dt2 −

∑
j dx

2
j goes into

a negative definite metric −dt2 −
∑

j dx
2
j . However, the minus sign

is traditionally dropped and one considers instead the positive metric
dt2 +

∑
j dx

2
j on VE.

11.2. Free scalar boson. Consider the theory of a free scalar bosonic
field φ of mass m. The procedure of quantization of this theory in the
Lagrangian setting is a straightforward generalization from the case
of quantum mechanics. Namely, the Lagrangian for this theory in
Minkowski space is

L =
1

2
((dφ)2 −m2φ2),

and the Euler-Lagrange equation is the Klein-Gordon equation

(� +m2)φ = 0,

where � is the D’Alembertian (wave operator),

� :=
∂2

∂t2
−
∑
j

∂2

∂x2
j

.

Thus to define the corresponding quantum theory, we should invert the
operator �+m2. This operator is essentially self-adjoint on compactly
supported smooth functions and thus defines a self-adjoint operator,
but as in the quantum mechanics case, it is not invertible – its spectrum
is the whole R, as can be easily seen by taking the Fourier transform.
So as before, it is best to proceed using the Wick rotation.

After the Wick rotation (i.e. the transformation t 7→ it), we arrive
at the Euclidean Lagrangian

LE =
1

2
((dφ)2 +m2φ2),

and the Euler-Lagrange equation is the Euclidean Klein-Gordon equa-
tion

(−∆ +m2)φ = 0.

So to define the quantum theory, i.e. the path integral∫
φ(x1)...φ(xn)e−S(φ)Dφ
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where S =
∫
L, we now need to invert the self-adjoint operator A =

−∆ + m2 (initially defined as an essentially self-adjoint operator on
smooth compactly supported functions), whose spectrum is [m2,∞), so
it is invertible when m > 0. The operator A−1 is an integral operator
whose Schwartz kernel is G(x−y), where G(x) is the Green’s function,
i.e. the fundamental solution of the Klein-Gordon equation:

−∆G+m2G = δ.

To solve this equation, note that the solution is rotationally invariant.
Therefore, outside of the origin, G(x) = g(|x|), where g is a function
on (0,∞) such that

−g′′ − d− 1

r
g′ +m2g = 0

(where the left hand side is the radial part of the operator A). This
is a version of the Bessel equation. If m > 0, the two basic solutions

are r
2−d

2 J± 2−d
2

(imr), where J is the Bessel function. (Actually, these

functions are elementary for odd d). Since we want G to decay at
infinity (clustering property), we should pick the unique up to scaling
linear combination which decays at infinity, namely,

(11.1) g = Cr
2−d

2 (J 2−d
2

(imr) + idJ− 2−d
2

(imr)), d 6= 2.

For d = 2, this expression is zero, and one should instead take the limit
of the right hand side divided by d − 2 as d → 2. The normalizing
constant can be found from the condition that AG = δ.

Remark 11.1. It is easy to check that for d = 1 this function equals
the familiar Green’s function for quantum mechanics, e−mr

2m
.

If m = 0 (massless case), the basis of solutions is: 1, r for d = 1,
1, log r for d = 2, and 1, r2−d for d > 2. Thus, if d ≤ 2, we don’t have a
decaying solution and thus the corresponding quantum theory will be
deficient: it will not satisfy the clustering property. On the other hand,
for d > 2 we have a unique up to scaling decaying solution g = Cr1−d.
The normalizing constant is found as in the massive case.

The higher correlation functions are found from the 2-point function
via the Wick formula, as usual.

We should now note a fundamental difference between quantum me-
chanics and quantum field theory in d > 1 dimensions. This difference
comes from the fact that while for d = 1, the Green’s function G(x) is
continuous at x = 0, for d > 1 it is singular at x = 0. Namely, G(x)
behaves like C|x|2−d as x → 0 for d > 2, and as C log |x| as d = 2.
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Thus for d > 1, unlike the case d = 1, the path integral∫
φ(x1)...φ(xn)e−S(φ)Dφ

(as defined above) makes sense only if xi 6= xj. In other words, this
path integral should be regarded not as a function but rather as a
distribution. Luckily, there is a canonical way to do it, since the Green’s
function G(x) is locally L1.

Now we can Wick rotate this theory back into the Minkowski space.
It is clear that the Green’s function will then turn into

GM(x) = g(
√
−|x|2 − iε),

which involves Bessel functions of both real and imaginary argument
(depending on whether x is timelike or spacelike) and has a singularity
on the light cone |x|2 = 0. In particular, it is easy to check that GM(x)
is real-valued for spacelike x, while for timelike x it is not. The function
GM(x) satisfies the equation

(� +m2)GM = iδ.

The higher correlation functions, as before, are determined from this
by the Wick formula.

Actually, it is more convenient to describe this theory “in momen-
tum space”, where the Green’s function can be written more explicitly.

Namely, the Fourier transform Ĝ(p) of the distribution G(x) is a solu-
tion of the equation

p2Ĝ+m2Ĝ = 1,

obtained by Fourier transforming the differential equation for G. Thus,

Ĝ(p) =
1

p2 +m2
,

as in the quantum mechanics case. Therefore, like in quantum mechan-
ics, the Wick rotation produces the distribution

ĜM(p) =
i

p2 −m2 + iε
,

which is the Fourier transform of GM(x).

11.3. Spinors. To consider field theory for fermions, we must gener-
alize to the case of d > 1 the basic fermionic Lagrangian 1

2
ψ dψ
dt

. To do

this, we must replace d
dt

by some differential operator on V . This op-
erator should be of first order, since in fermionic quantum mechanics
it was important that the equations of motion are first order equa-
tions. Clearly, it is impossible to define such an operator so that the
Lagrangian is SO+(V )-invariant, if ψ is a scalar-valued (odd) function
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on V . Thus, a fermionic field in field theory of dimension d > 1 cannot
be scalar-valued, but rather must take values in a real representation
S of SO+(V ), such that there exists a nonzero intertwining operator
V → Sym2S∗. This property is satisfied by spinor representations.
They are indeed basic in fermionic field theory, and we will now briefly
discuss them (for more detail see “Spinors” by P.Deligne, in “QFT and
string theory: a course for mathematicians”).

First consider the complex case. Let V be a complex inner product
space of dimension d > 1. Let Cl(V ) be the Clifford algebra of V ,
defined by the relation ξη + ηξ = 2(ξ, η), ξ, η ∈ V . As we discussed,
for even d it is simple and has a unique irreducible representation S of

dimension 2
d
2 , while for odd d it has two such representations S ′, S ′′ of

dimension 2
d−1

2 . It is easy to show that the space Cl2(V ) of quadratic
elements of Cl(V ) (i.e. the subspace spanned elements of the form
ξη − ηξ, ξ, η ∈ V ) is closed under bracket, and constitutes the Lie
algebra o(V ). Thus o(V ) acts on S (respectively, S ′, S ′′). This action
does not integrate to an action of SO(V ), but integrates to an action
of its double cover Spin(V ).

If d is even, the representation S of Spin(V ) is not irreducible.
Namely, recall that S is the exterior algebra of a Lagrangian sub-
space of V . Thus it splits in a direct sum S = S+ ⊕ S− (odd and
even elements). The subspaces S+, S− are subrepresentations of S,
which are irreducible. They are called the half-spinor representations.
The half-spinor representations are interchanged by the adjoint ac-
tion of O(V ) on Spin(V ) (SO(V ) clearly acts trivially, so this is, in
fact, and action of O(V )/SO(V ) = Z/2 on the set of irreducible rep-
resentations of SO(V )). Note that in contrast, for odd d we have
O(V ) = SO(V ) × Z/2, so the Z/2 acts on representations of Spin(V )
trivially.

If d is odd, the representations S ′ and S ′′ of Spin(V ) are irreducible
and isomorphic. Any of them will be denoted by S and called the
spinor representation. Thus, we have the spinor representation S for
both odd and even d, but for even d it is reducible.

An important structure attached to the spinor representation S is
the intertwining operator Γ : V → EndS called Clifford multiplication,
given by the action of V ⊂ Cl(V ) in S, which we already encountered
above. This intertwiner allows us to define the Dirac operator

(11.2) D =
∑
i

Γi
∂

∂xi
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where xi are coordinates on V associated to an orthornormal basis ei,
and Γi = Γ(ei). This operator acts on functions from V to S, and
D2 = ∆, so D is a square root of the Laplacian. The matrices Γi are
called Γ-matrices.

Note that for even d, one has Γ(v) : S± → S∓, so D acts from
functions with values in S± to functions with values in S∓.

By a polyspinor representation of Spin(V ) we will mean any linear
combination of S+, S− for even d, and any multiple of S for odd d. For
even d and a polyspinor representation Y = Y+ ⊗ S+ ⊕ Y− ⊗ S− (i.e.,
Y± = Hom(S±, Y )) where Y+, Y− are vector spaces, set Y ′ := Y+⊗S−⊕
Y−⊗S+, while for odd d and Y = Y0⊗S we set Y ′ := Y ; thus Y 7→ Y ′

is an endofunctor on the category of polyspinor representations. Then
for every polyspinor representation Y and v ∈ V we have the Clifford
multiplication operator Γ(v) : Y → Y ′.

Now assume that V is a real inner product space with Minkowski
metric. In this case we can define the group Spin+(V ) to be the preim-
age of SO+(V ) under the map Spin(VC)→ SO(VC). It is a double cover
of SO+(V ) (if d = 2, this double cover is disconnenced and actually a
direct product by Z/2).

By a real polyspinor representation of Spin+(V ) we will mean a real
representation Y of this group such that YC is a polyspinor represen-
tation of Spin(VC).

Remark 11.2. Note that in all dimensions except d = 2, the group
Spin(d) is the universal cover of SO(d), which means that spins of all
particles are either integers or half-integers. On the other hand, the
universal cover of SO(2) is not Spin(2), but rather R. This creates in
two dimensions a possibility of particles whose spin is any positive real
number. Such particles are called anyons (particles of any spin), and
we will see how they appear in 2-dimensional conformal field theory.

11.4. Fermionic Lagrangians. Now let us consider Lagrangians for
a spinor field ψ with values in a polyspinor representation Y . Note
that in even dimensions such fields are split into fields valued in S+

and S−, respectively. Such spinors are called chiral.
As the Lagrangian is supposed to be real in the Minkowski setting,

we will require in that case that Y be real. First of all, let us see
what we need in order to write the “kinetic term” (ψ,Dψ). Clearly,
to define such a term (so that the corresponding term in the action
does not reduce to zero via integration by parts), we need an invariant
non-degenerate pairing (, ) between Y and Y ′ (i.e., an isomorphism of
representations Y ′ ∼= Y ∗) such that for any v ∈ V , the bilinear form
(x,Γ(v)y) on Y is symmetric.
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Let us find for which Y this is possible (for complex V ). The behavior
of Spin groups depends on d modulo 8 (real Bott periodicity). Thus we
will list the answers labeling them by d mod 8 (they are easily extracted
from the tables given in Deligne’s text). First we summarize properties
of spin representations.

0. S± orthogonal.
1. S orthogonal, S ⊗ S → V symmetric.
2. S∗+ = S−, S± ⊗ S± → V symmetric.
3. S symplectic, S ⊗ S → V symmetric.
4. S± symplectic.
5. S symplectic, S ⊗ S → V antisymmetric.
6. S+ = S∗−, S± ⊗ S± → V antisymmetric.
7. S orthogonal, S ⊗ S → V antisymmetric.

Thus the possibilities for the kinetic term are:

0. n(S+ ⊕ S−); (,) gives a perfect pairing between Y+ and Y−.
1. nS; (,) gives a symmetric inner product on Y0.
2. nS+ ⊕ kS−; (,) gives symmetric inner products on Y±.
3. nS; (,) gives a symmetric inner product on Y0.
4. n(S+ ⊕ S−); (,) gives a perfect pairing between Y+ and Y−.
5. 2nS; (,) gives a skew-symmetric inner product on Y0.
6. 2nS+ ⊕ 2kS−; (,) gives skew-symmetric inner products on Y±.
7. 2nS; (,) gives a skew-symmetric inner product on Y0.

Let us now find when we can also add a mass term. Recall that
the mass term has the form (ψ,Mψ), so it corresponds to an invariant
skew-symmetric operator M : Y → Y ∗ ∼= Y ′ (note that by definition,
Γi commute with M). Let us list those Y from the above list for which
such a non-degenerate operator exists.

0. 2n(S+ ⊕ S−); M± : Y± → Y∓ are skew-symmetric under (, ).
1. 2nS; M : Y0 → Y0 is skew-symmetric under (, ).
2. n(S+ ⊕ S−); M± : Y± ∼= Y∓ satisfy M∗

+ = −M− under (, ).
3. nS; M : Y0 → Y0 is symmetric under (, ).
4. n(S+ ⊕ S−); M± : Y± → Y∓ are symmetric under (, ).
5. 2nS; M : Y0 → Y0 is symmetric under (, ).
6. 2n(S+ ⊕ S−); M± : Y± ∼= Y∓ satisfy M∗

+ = −M− under (, ).
7. 2nS; M : Y0 → Y0 is skew-symmetric under (, ).

To pass to the real Minkowski space (in both massless and massive
case), one should put the additional requirement that Y should be a
real representation.
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We note that upon Wick rotation to Minkowski space, it may turn
out that a real spinor representation Y will turn into a complex repre-
sentation which has no real structure. Namely, this happens for mass-
less spinors that take values in S± if d = 2 mod 8. These representa-
tions have a real structure for Minkowskian V (i.e. for Spin+(1, d−1)),
but no real structure for Euclidean V (i.e. for Spin(d)). This is quite
obvious, for example, when d = 2 (check!).

Remark 11.3. One may think that this causes a problem in quantum
field theory, where we would be puzzled what to integrate over – real
or complex space. However, the problem in fact does not arise, since
we have to integrate over fermions, and integration over fermions (say,
in the finite dimensional case) is purely algebraic and does not make a
distinction between real and complex.

11.5. Free fermions. Let us now consider a free theory for a spinor
field ψ : V → ΠY , where Y is a polyspinor representation, defined by
a Lagrangian

L =
1

2
(ψ, (D−M)ψ),

where M is allowed to be degenerate (we assume that Y is such that
this expression makes sense). The equation of motion in Minkowski
space is

Dψ = Mψ.

Thus, to define the corresponding quantum theory, we need to invert
the operator D − M . As usual, this cannot be done because of a
singularity, and it is best to use the Wick rotation.

The Wick rotation produces the Euclidean Lagrangian

L =
1

2
(ψ, (DE +M)ψ)

(note that the i in the kinetic term is hidden in the definition of the
Euclidean Dirac operator). We invert DE +M to obtain the Euclidean
Green’s function. To do this, it is convenient to go to momentum space,
i.e. perform a Fourier transform. Namely, after Fourier transform DE

turns into the operator ip, where p =
∑

j pjΓj, and pj are the operators
of multiplication by the momentum coordinates pj. Thus, the Green’s
function (i.e. the 2-point function) G(x) ∈ Hom(Y ∗, Y ) is the Fourier
transform of the matrix-valued function 1

ip+M
.

In the Euclidean case the group Spin(V ) is compact and the spinor
representations carry natural positive invariant Hermitian forms. So in
this case without loss of generality we may consider polyspinor repre-
sentations equipped with such positive forms, and on every polyspinor
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representation such a form is unique up to isomorphism. Let

M † : Y ∗ → Y

be the Hermitian adjoint operator to M . Then the reality condition is
that M is Hermitian: M † = M . Thus

(−ip +M)(ip +M) = p2 +M2

so that

Ĝ(p) = (p2 +M2)−1(−ip +M).

This shows that G(x) is expressed through the Green’s function in the
bosonic case by differentiations (how?). After Wick rotation back to
the Minkowski space, we get

ĜM(p) = (p2 −M2 + iε)−1(p + iM).

Finally, the higher correlation functions, as usual, are found from the
Wick formula.

11.6. Hamiltonian formalism of classical field theory. Let us
now develop the hamiltonian approach to QFT, extending the hamil-
tonian formalism of quantum mechanics. We start with classical field
theory, extending the hamiltonian formalism of classical mechanics.
As in the Lagrangian setting, this can be done by formalizing the idea
that field theory is mechanics of a continuum of particles occupying
each point of the space Rd−1.

Namely, consider a free scalar bosonic field φ(x) on a Minkowski
space Rd. As we have discussed, its Lagrangian is L = 1

2
((dφ)2−m2φ2)

and the equation of motion is the Klein-Gordon equation

φtt −∆sφ+m2φ = 0,

where ∆s is the spacial Laplacian. This is a second order equation with
respect to t, so the initial value problem for this equation has the form

φ(0, x) = q(x), φt(0, x) = p(x)

(there is a standard explicit formula for solution of this problem, ex-
pressing it via the fundamental solution of the Klein-Gordon equation).
Thus it is natural to introduce the phase space

Y := T ∗C∞0 (Rd−1) := C∞0 (Rd−1)⊕ C∞0 (Rd−1)

of pairs (q, p) of smooth functions with compact support, on which the
dynamics of the Klein-Gordon equation takes place (note that the space
C∞0 (Rd−1) is invariant under this dynamics since the speed of wave
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propagation is finite, namely equals 1). Note that the phase space is
an infinite dimensional symplectic space with constant symplectic form

ω((q1, p1), (q2, p2)) =

∫
Rd−1

(p1(x)q2(x)− p2(x)q1(x))dx.

Also for any point x ∈ Rd−1 we have the local linear functionals

(q, p) 7→ q(x), (q, p) 7→ p(x)

which we will denote by φ(x) and φt(x), respectively. From these
functionals we can make other linear functionals: for example, given
ρ ∈ C∞0 (Rd−1), we can define the functionals

φ(ρ)(q, p) :=

∫
Rd−1

q(x)ρ(x)dx, φt(ρ)(q, p) :=

∫
Rd−1

p(x)ρ(x)dx.

The Poisson bracket between such functionals can be computed by the
formulas

{φ(ρ1), φ(ρ2)} = 0, {φt(ρ1), φt(ρ2)} = 0,

{φ(ρ1), φt(ρ2)} =

∫
Rd−1

ρ1(x)ρ2(x)dx.

This can be written as a field-theoretic Poisson bracket:

{φ(x), φ(y)} = 0, {φt(x), φt(y)} = 0, {φ(x), φt(y)} = δ(x− y);

then the previous formulas can be recovered by integrating both sides
against ρ1(x)ρ2(y). In other words, the linear local functionals φ(x) and
φt(x) should be thought of not as smooth functions on Y depending
on a point x ∈ Rd−1 but rather as distributions on Rd−1 with values in
smooth functions on Y .

Similarly, one may consider non-linear polynomial local functionals,
given by differential polynomials P (φ, φt) evaluated at a point x, such
as φn, φ2

t , (dsφ)2, φ2(dsφ)2 (where ds is the spatial differential), etc., and
even non-polynomial ones depending on finitely many derivatives of φ,
such as eφ(dsφ)2, cosφ, and so on. They are called local because they
depend only on the derivatives of φ at a single point x. Each of them
is a distribution on Rd−1 with values in smooth functions on Y , and
can be applied to any density ρ(x) to produce a smooth function on Y .
Poisson brackets of such functionals are computed using the chain rule,
the Leibniz rule, and the fact that taking Poisson brackets commutes
with differentiation by x. So given two local functionals P and Q, we
obtain

{P (φ)(x), Q(φ)(y)} =
∑
α

{P,Q}α(φ)(x)∂αx δ(x− y)
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for some local functionals {P,Q}α, where ∂α are monomials in the
derivatives. For example, for d = 2

{φtx(u)φt(u), 1
3
φ3(v)} =

−(φtx(u)φ2(u) + 2φtx(u)φ(u)φx(u))δ(u− v)− φt(u)φ2(u)δ′(u− v).

This Poisson bracket can of course be extended to products of local
functionals at different points using the Leibniz rule.

The Hamiltonian of the theory is then given by integrating a local
functional against the constant density:

H(φ) =
1

2

∫
Rd−1

(φ2
t + (dsφ)2 +m2φ2)dx.

Namely, it is determined (up to a constant) by the condition that the
Hamilton equation

Ft = {F,H}
for local functionals φ, φt is equivalent to the Klein-Gordon equation.

The Hamiltonian dynamics allows us to define the local functionals
not just at a point x ∈ Rd−1 but actually at any point (t, x) ∈ Rd.
When we do, by definition we get φt(t, x) = d

dt
φ(t, x) and the local

functional φ(t, x) becomes a solution of the Klein-Gordon equation:

φtt −∆sφ+m2φ = 0.

This can be used to compute the Poisson brackets: for example, we see
that

{φ(t1, x1), φ(t2, x2)} = G(t2 − t1, x2 − x1)

where G(t, x) solves the Klein-Gordon equation with initial conditions

G(0, x) = 0, Gt(0, x) = δ(x).

To find it, take the Fourier transform. Then we get a distribution Ĝ
supported on the two-sheeted hyperboloid Xm given by the equation
E2 = p2 +m2, of the form

Ĝ(E, p) = f+(p)δX+
m

+ f−(p)δX−m ,

where X±m are the sheets of Xm. Moreover, the initial conditions give
(up to appropriate normalization)∫

R
Ĝ(E, p)dE = 0,

∫
R

Ĝ(E, p)EdE = 1,

which yields

f+(p) + f−(p) = 0,
√
p2 +m2(f+(p)− f−(p)) = 1.
157



Thus f+ = −f− = 1

2
√
p2+m2

and we have

Ĝ(E, p) =
1

2
√
p2 +m2

(δX+
m
− δX−m).

Now G can be found by taking the inverse Fourier transform (it ex-
presses via the Bessel functions).

Note that since the speed of wave propagation is 1, this distribution
G is supported on the solid light cone, so {φ(t1, x1), φ(t2, x2)} = 0 if
the points (t1, x1) and (t2, x2) are spacelike separated, meaning that
the vector (t1 − t2, x1 − x2) is spacelike. This property is called space
locality, a mathematical expression of causality in special relativity.

Remark 11.4. A part of this analysis extends straightforwardly to
the case of non-free theories, for example the φ4-theory, having the
Lagrangian

L =
1

2
((dφ)2 −m2φ2)− g

4
φ4.

In this case the Klein-Gordon equation is replaced by its non-linear
deformation

φtt −∆sφ+m2φ+ gφ3 = 0,

so there is a nontrivial issue of existence of solutions of the initial value
problem for this non-linear PDE. However, this issue is irrelevant if we
just want to consider Poisson brackets of local functionals on Rd−1 or
its formal neighborhood, since then the computations are purely formal
(algebraic).

An important fact is that this structure is invariant under the Poincaré
group P := SO+(V ) n V generated by Minkowski rotations and trans-
lations, where V = Rd is the spacetime (the semidirect product of the
Lorentz group SO+(V ) and the group of translations V ). This fol-
lows from the fact that the Lagrangian of the theory is relativistically
invariant. Namely, for g ∈ P given by

g(t, x) = (at+ bx+ c, αt+ βx+ γ)

we have

(φg)(x)(q, p) = φ(bx+ c, βx+ γ)

and

(φtg)(x)(q, p) = (∂αφ)(bx+ c, βx+ γ) + aφt(bx+ c, βx+ γ).

where φ(t, x) is the solution of the Klein-Gordon equation with initial
conditions (q(x), p(x)).
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In particular, note that the Galileo subgroup SO(Rd−1) n Rd−1 acts
by manifest geometric symmetries, while time translations act by the
Hamiltonian flow.

Finally, note that this discussion extends in a straighforward way
to theories including fermions. In this case, as in fermionic classical
mechanics, we get a field theoretic super-Poisson bracket on classical
fields, which is symmetric rather than skew-symmetric if both fields
are odd. Also, since odd fields take values in polyspinor represen-
tations, the Poincaré group should be replaced by its double cover

P̃ := Spin+(V ) n V . We leave the details to the reader.

11.7. Hamiltonian formalism of QFT: the Wightman axioms.
To quantize this picture, we need to define a Hilbert space H and lift
classical observables (local functionals and their integrals) to (densely
defined) operators on H, notably lift the classical hamiltonian H to

a quantum hamiltonian Ĥ depending on the Planck constant ~ which
should be a self-adjoint (in general, unbounded) operator on H. More-
over, this should be done in such a way that commutators vanish at
~ = 0 and in first order in ~ recover the Poisson bracket. We should
also have a unitary representation of the double cover P̃ of the Poincaré
group on the spaceH such that the 1-parameter subgroup of time trans-

lations acts by the quantum dynamics 1-parameter group e−itĤ . This
generalization of Hamiltonian quantum mechanics can be accomplished
by means of so called Wightman axioms, which we now describe.

First of all, for the quantum theory to have good properties, we
want the energy to be bounded below. Thus we introduce the following
definition. Let us fix an orthogonal decomposition V = R ⊕ Vs into
space and time and consider the self-adjoint operator

Ĥπ := i d
dt
|t=0π(t, 0).

Definition 11.5. A unitary representation π : P̃ → AutH is said to

be positive energy if the spectrum of Ĥπ is bounded below.

Note that every unitary representation π of V has a spectrum σ(π),
which is a closed subset of V ∗ ∼= V ; namely, σ(π) is the set of characters
of V that occur (discretely or continuously) in π (i.e., the smallest set
containing the support of the Fourier transform of the distribution
〈w1, π(v)w2 〉, v ∈ V , for any w1, w2 ∈ H).

Lemma 11.6. Suppose dimV ≥ 2. Then π is positive energy if and
only if σ(π) is contained in the positive part of the solid light cone, V +.

Proof. By definition, π is of positive energy iff the orthogonal projection
of σ(π) onto the dual of the time axis is bounded below. Since σ(π) is

159



invariant under SO+(V ), this implies the statement (an SO+(V )-orbit
on V has bounded below projection iff it is contained in V +). �

Note that this is false for d = 1 (quantum mechanics), where the
hamiltonian can be shifted by a constant without any effect on the the-
ory. But the latter is longer so in quantum field theory on a Minkowski
space of dimension > 1.

We are now ready to give Wightman’s definition of a QFT. Let S =
S(V ) be the Schwartz space of V .

Definition 11.7. A Wightman QFT on a Minkowski space V entails
the following data:

1. A finite dimensional real super-representation R = R0 ⊕ R1 of
Spin+(V ) (the field space).

2. A super Hilbert spaceH = H0⊕H1 carrying a positive energy uni-

tary representation π : P̃→ AutH of the double cover of the Poincaré

group, P̃ = Spin+(V ) n V .

3. A dense P̃-stable subspace D ⊂ H.

4. A P̃-invariant unit vector Ω ∈ D called the vacuum vector.
5. A P̃-invariant even linear map: S ⊗ R∗ → EndD called the field

map.
This data is subject to the following axioms.
A1. If f is real then φ(f) is Hermitian symmetric (in the supersense).
A2. φ is weakly continuous, i.e. for every w1, w2 ∈ D, the functional

S ⊗R∗ → C defined by f 7→ 〈w1, φ(f)w2 〉 is continuous.
A3. D is spanned (algebraically) by vectors φ(f1)...φ(fn)Ω.
A4. Space locality: If f1, f2 have spacelike separated supports, i.e.,

for any v1 ∈ suppf1, v2 ∈ suppf2 we have |v1 − v2|2 < 0, then

[φ(f1), φ(f2)] = 0

(with commutator understood in the supersense).

In addition, if HP̃ = CΩ, one says that we have a Wightman QFT
with a unique vacuum.

We will also always assume that our QFT is nondegenerate, i.e.,
for every irreducible subrepresentation E ⊂ R∗j , j = 0, 1, one has
φ|S⊗E 6= 0; otherwise we can simply remove this subrepresentation
without any effect on the theory.

A fundamental fact about Wightman QFT is the following theorem,
which we will not prove here. Let ζ be the generator of the kernel of
the map Spin+(V )→ SO+(V ), so ζ2 = 1.

Theorem 11.8. (The spin-statistics theorem) If E ⊂ R∗j is a subrep-

resentation then ζ|E = (−1)j.
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In other words, there is a relationship between the spin (mod in-
tegers) of a quantum field (essentially, the eigenvalue of ζ) and its
statistics, i.e., whether it is bosonic (even) or fermionic (odd). Namely,
the theorem says that all bosonic fields must have ζ = 1 (integer spin)
and all fermionic fields must have ζ = −1 (half-integer spin).

Remark 11.9. We will see that the theory of free bosons and fermions
can be naturally formulated as a Wightman QFT. Moreover, this is also
the case for a number of non-free theories, which is the subject of a diffi-
cult area of mathematical physics called constructive field theory. Still,
most theories that physicists really care about are either not known to
be Wightman QFT, or simply fail to be ones for various reasons (per-
turbative theories, low energy effective theories, non-unitary theories,
Euclidean theories, theories living on compact manifolds, etc.) Thus
we will view Wightman axioms just as one (somewhat limited) rigorous
model for our mathematical understanding of QFT.

11.8. Wightman functions.

Proposition 11.10. In a Wightman QFT on a Minkowski space V ,
for every n ≥ 1 there exists a unique tempered distribution Wn on V n

valued in R∗⊗n such that

Wn(f1 � ...� fn) = 〈Ω, φ(f1)...φ(fn)Ω 〉.

We leave the proof of this proposition as an exercise.
We will therefore think of Wn as a (generalized) function on V ⊗n

valued in R∗⊗n, denoted Wn(x1, ..., xn), so that

Wn(f1 � ...� fn) =

∫
V n
Wn(x1, ..., xn)f1(x1)...fn(xn)dx1...dxn

where the product on the right hand side involves contraction of corre-
sponding copies of R and R∗. Thus, given u1, ..., un ∈ R, we have the
scalar-valued distribution

W u1,...,un
n (x1, ..., xn) := (Wn(x1, ..., xn), u1 ⊗ ...⊗ un).

In other words, we may define an operator-valued distribution φ(x)
such that

φ(f) =

∫
V

φ(x)f(x)dx;

then

Wn(x1, ..., xn) = 〈Ω, φ(x1)...φ(xn)Ω 〉.

Definition 11.11. The generalized functions Wn(x1, ..., xn) are called
the Wightman (correlation) functions of the Wightman QFT.
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Note that Wightman functions completely determine the Wightman

QFT as follows. Let D̃ := T (S ⊗ R) (the tensor algebra), so it is
spanned by elements f1 ⊗ f2 ⊗ ... ⊗ fn, fi ∈ S ⊗ R. Define the inner

product on D̃ by

〈 f1⊗...⊗fn, g1⊗...⊗gm 〉 := (−1)
∑
i<j p(fi)p(fj)Wn+m(fn�...�f 1�g1�...�gm).

It is easy to see that this inner product is well defined, and

〈 f1 ⊗ ...⊗ fn, g1 ⊗ ...⊗ gm 〉 = 〈φ(f1)...φ(fn)Ω, φ(g1)...φ(gm)Ω 〉
(where fi are purely odd or purely even). Thus the inner product 〈 , 〉
on D̃ is nonnegative definite, the Hilbert space H can be recovered as

the completion of D̃ with respect to 〈 , 〉, and D is the image of D̃
in H (note that the map D̃ → H need not be injective). Moreover,

the vector Ω is the image of 1 ∈ D̃ in D, and the representation π is

obtained by extending the action of P̃ on D (which descends from D̃)
by continuity.

So we can ask: what conditions should Wightman functions satisfy
to define a Wightman QFT? Let us list some necessary conditions,
which follow from the above discussion. To this end, denote by

W : T (S ⊗R)→ C
the natural liner map and by ∗ : T (S ⊗R)→ T (S ⊗R) the antilinear
map given by (f1 ⊗ ...⊗ fn)∗ = (−1)

∑
i<j p(fi)p(fj)fn ⊗ ...⊗ f 1.

Proposition 11.12. The Wightman functions Wn of a Wightman QFT
satisfy the following properties.

1. Wn are P̃-invariant.
2. Positive energy: the Fourier transform of Wn is supported on the

set of (p1, ..., pn) ∈ V n such that
∑

i pi = 0 and pi+1 − pi ∈ V +.

3. Wn(f ∗) = Wn(f).
4. Space locality:

W u1,...,un
n (x1, ..., xi, xi+1, ..., xn) = (−1)p(ui)p(ui+1)Wn(x1, ..., xi+1, xi, ..., xn)

if |xi − xi+1|2 < 0.
5. Positivity: W (f ∗ ⊗ f) ≥ 0 for any f ∈ T (S ⊗R).

Proof. (1) follows from the invariance of the vacuum vector and the
field map. (3) follows from the fact that for real f , φ(f) is hermitian
symmetric. (4) follows from the space locality axiom. (5) follows from
positivity of the inner product on H. So it remains to prove (2). Let
us do so for n = 2, the general proof is similar.

By translation invariance we have

W2(v1, v2) = W(v)
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where v = v2 − v1. Thus our job is to show that the Fourier transform
of W is supported on V +. We have

W(v) = 〈Ω, φ(0)φ(v)Ω 〉 =

= 〈Ω, φ(0)π(v)φ(0)π(−v)Ω 〉 = 〈φ(0)Ω, π(v)φ(0)Ω 〉.
So the statement follows from the fact that every character of V which
occurs in H belongs to V +. �

In fact, it turns out that these necessary conditions are also sufficient,
and we have the following theorem, which can be proved by following
the above reconstruction procedure (but we will not give a proof):

Theorem 11.13. If a collection of distributions Wn satisfies conditions
(1)-(5) of Proposition 11.12 then they define a Wightman QFT.

Remark 11.14. The 1-point Wightman function W1(x) = 〈Ω, φ(x)Ω 〉
is a constant c by translation invariance, i.e. it is an element of R∗, and
by invariance under rotations it is in (R∗)Spin+(V ). Thus we may (and
will) assume without loss of generality that c = 0 (otherwise we can
replace φ(x) by φ(x)− c). So we may assume without loss of generality
that W1 = 0.

Remark 11.15. The positivity property for the 2-point function can
be written as ∫

V 2

W(x2 − x1)f(x1)f(x2)dx1dx2 ≥ 0,

where W(x) = W2(0, x). Thus, taking Fourier transforms, we have∫
V

Ŵ(p)f̂(p)f̂(p)dp ≥ 0.

This shows that Ŵ(p)dp is a measure concentrated on V + and valued
in nonnegative hermitian forms on RC.

11.9. The mass spectrum of a Wightman QFT. Let H(1) ⊂ H
be the closure of the span of vectors φ(x)Ω, x ∈ V . It is called the

space of 1-particle states, and it is clearly a P̃-subrepresentation of H.
The mass spectrum of the theory is determined by the structure of this

representation. So we need to discuss the representation theory of P̃.

Since P̃ is a semidirect product, its irreducible unitary representa-
tions are unitarily induced. Namely, let O be an orbit of Spin+(V ) on

V and ρ be an irreducible unitary representation of the stabilizer P̃0

of a point v0 ∈ O. Then ρ defines an equivariant Hilbert bundle on O
with total space (P̃ × ρ)/P̃0 where P̃0 acts diagonally. Thus we can
consider the space HO,ρ of square integrable half-densities on O with
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values in this bundle. This space carries a unitary representation of

P̃. A theorem of Mackey then says that this unitary representation

is irreducible, and all irreducible unitary representations of P̃ are ob-
tained uniquely in this way. For example, if O = {0}, then H0,ρ is just
a unitary irreducible representation of Spin+(V ).

Now we are ready to discuss the structure of the representation H(1).
By taking Fourier transforms (see Remark 11.15), we see that if HO,ρ
occurs in H(1) then ρ needs to be finite dimensional. For example, for
d ≥ 3 and O = 〈0〉 the only choice is the trivial representation, as
the group Spin+(V ) is a connected semisimple non-compact Lie group.
Moreover, if the theory has a unique vacuum then the trivial represen-
tation occurs in H discretely with multiplicity 1, as the span of the
vacuum vector Ω. As H(1) is orthogonal to Ω (since W1 = 0), we see
that the trivial representation does not occur in H(1).

Let us now consider what happens with other orbits. By the positive
energy condition, the only orbits that can occur are X+

m defined by

E =
√
p2 +m2, E > 0 (where for d = 2 the set X+

0 falls into two
orbits X++

0 and X+−
0 defined by p = ±E > 0). For m > 0 this is the

upper sheet of a 2-sheeted hyperboloid and for m = 0 it is the upper
part of the light cone (which is a union of two orbits for d = 2).

In the case m > 0, we may take v0 = (m, 0), then P̃0 = Spin(d− 1),
so ρ is a (necessarily finite dimensional) unitary representation of this
compact Lie group. Physicists say that this representation corresponds
to a massive particle of mass m and type ρ. Particles arising in phys-
ically relevant quantum field theories are usually scalars (ρ = C),
spinors (ρ is a spinor representation of Spin(d − 1)) and vectors (ρ =
Cd−1 is the vector representation Spin(d − 1)). Note that by the
spin-statistics theorem, scalars and vectors are bosons and spinors are
fermions.

If m = 0, d ≥ 3, then we can take v0 = (1, 1, 0, ..., 0), and the
stabilizer is the non-reductive Lie group Spin(d − 2) n Rd−2. Since ρ
is finite dimensional, Rd−2 has to act trivially, so ρ is an irreducible
representation of the compact Lie group Spin(d − 2). Physicists say
that this representation corresponds to a massless particle of type ρ.
The classification of massless particles is the same as for massive ones;
however, note that since for massless particles ρ is a representation
of Spin(d − 2) rather than Spin(d − 1), they in general have fewer
components than massive ones; for example, a massless vector has one
fewer component than a massive one.

If m = 0, d = 2 then there are two choices for v0: (1, 1) and (1,−1).
They have trivial stabilizer, so ρ = C. Thus we have two types of
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massless particles: right-moving and left-moving, corresponding to the
two choices of v0. These particles are called this way since the cor-
responding operators φ(x) satisfy the conditions φ(t, x) = φ(0, x − t),
φ(t, x) = φ(0, x + t), respectively, which classically would be right-
moving and left-moving waves.

The set M of numbers m corresponding to representations HX+
m,ρ

(or

HX+±
0 ,ρ for d = 2) occurring in H(1) is called the mass spectrum of the

theory. One says that the theory has a mass gap when infM = m > 0.

In this case the spectrum of Ĥ is {0} ∪ [m,+∞], so there is a gap
between 0 and m. To find the mass spectrum, it suffices to look at the

function Ŵ: the mass spectrum is just the intersection of its support
with the time axis (this follows from Remark 11.15).

11.10. Free theory of a scalar boson. Let us now construct a Wight-
man QFT corresponding to a scalar boson of mass m > 0. Recall that
in the Lagrangian setting we had a 2-point function GM(x2−x1), where
GM(x) is a distribution satisfying the Klein-Gordon equation

(� +m2)GM = iδ.

So at first sight for the corresponding Wightman QFT we want to have
W(x) = GM(x), so that the Lagrangian and Hamiltonian approach
agree. However, the function GM(x) is even, while for W(x) we are

supposed to have W(−x) = W(x), so our equality needs to be relaxed.
In fact, the correct condition is that the identity W(x) = GM(x) only
needs to hold when x is spacelike or when x ∈ V +. When x ∈ V −, we

should rather have W(x) = GM(x). In other words,

GM(x2 − x1) = W T
2 (x1, x2)

is the so-called time ordered 2-point function, i.e. one obtained from
W2(x1, x2) when x1, x2 are put in the chronological order (where in
the spacelike separated case the order does not matter due to space
locality).

We claim that with this definition the function W(x) satisfies the
Klein-Gordon equation

(� +m2)W = 0

on the nose (without the delta-function on the right hand side). Indeed,
we have ReW(x) = ReG(x), which satisfies the Klein-Gordon equation,
so it remains to show that ImW(x) satisfies it as well. But it is easy
to see that (� + m2)ImW(x) is a distribution supported at the origin
of homogeneity degree −d, so it is a multiple of δ. Since ImW(x) is an
odd function, this distribution must be zero, as claimed.
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Also, since GM(x) is real for spacelike x, we get W(−x) = W(x).

Thus the Fourier transform Ŵ(p) is real valued, supported on the hy-
perboloid Xm and invariant under SO+(V ). It follows that

Ŵ(p) = c+δX+
m

+ c−δX−m .

where c± ∈ R. but in fact it can be shown that only δX+
m

occurs (this
follows from the exponential decay of the Euclidean 2-point correlation
function at infinity). Thus

Ŵ(p) = cδX+
m
.

In fact, one can show that c = 2π.
Similarly, we define higher Wn for n > 2 by the Wick formula,

and this analysis implies after some work that these functions define a
Wightman QFT.

In this case, H(1) = L2(X+
m), so we have a single particle of mass m.

The theory of a free massless scalar, as well as massive and massless
spinor is defined similarly.

11.11. Normal ordering, composite operators and operator prod-
uct expansion in a free QFT. In classical field theory, given a clas-
sical scalar field φ(x), we may consider arbitrary polynomials and even
any smooth functions of φ. The same is true for quantum mechan-
ics, where φ(t) is a self-adjoint (possibly unbounded) operator on the
Hilbert space H of quantum states, so using its spectral decomposition,
we may define functions of φ. However, in quantum field theory in d+1
dimensions with d ≥ 1 the situation is more complicated. Indeed, in
this case φ(x) is not a usual operator-valued function of x, but rather a
generalized one – an operator-valued distribution, and we know that for
singular distributions, such as δ(x), we cannot even define the square
δ(x)2.

Indeed, let φ(x) be a quantum scalar boson. Then the 2-point cor-
relation function

〈φ(x)φ(y)〉 = 〈Ω, φ(x)φ(y)Ω〉 = G(x− y)

blows up when |x − y|2 = 0 (so in Euclidean signature, when x = y),
so the operator φ2(x) cannot possibly be well defined.

Thus, if we want to quantize the classical field φ2(x), we need to
regularize the corresponding operator product. This can be done by a
standard regularization procedure called the normally ordered product.

For example, in Euclidean signature, the operator product φ(x)φ(y)
is well defined when x 6= y: indeed, by Wick’s formula

〈φ(x)φ(y)φ(z1)...φ(zk)〉 =
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G(x−y)〈φ(z1)...φ(zk)〉+
∑
i6=j

G(x−zi)G(y−zj)〈φ(z1)...φ̂(zi)...φ̂(zj)...φ(zk)〉,

where the hat indicates omissions (here x, y, z1, ..., zk are distinct).
Now, when x → y, the first summand in this formula blows up while
the second one does not. So it is natural to define the normally ordered
product : φ(x)φ(y) : just by throwing away the singular terms, i.e. by
the condition that its correlation function with φ(z1)...φ(zk) is

〈 : φ(x)φ(y) : φ(z1)...φ(zk)〉 =
∑
i6=j

G(x−zi)G(y−zj)〈φ(z1)...φ̂(zi)...φ̂(zj)...φ(zk)〉.

This is equivalent to just saying that

: φ(x)φ(y) : = φ(x)φ(y)−G(x− y).

Note that while φ(x)φ(y) blows up when x = y, the normally ordered
product : φ(x)φ(y) : does not:

〈 : φ2(x) : φ(z1)...φ(zk)〉 =
∑
i6=j

G(x−zi)G(x−zj)〈φ(z1)...φ̂(zi)...φ̂(zj)...φ(zk)〉.

This defines a composite operator : φ2(x) : , which is a well defined
operator-valued distribution.

Similarly one may define the normally ordered product : φ(x1)...φ(xm) :
of any number of factors, by removing all the singular terms from the
correlators. For example,

: φ(x)φ(y)φ(z) : = φ(x)φ(y)φ(z)−G(x−y)φ(z)−G(y−z)φ(x)−G(z−x)φ(y).

Such a product is well defined for all values of x1, ..., xk and is com-
mutative (independent of ordering of factors) and associative. We can
also differentiate by xj any number of times, to define the normally or-
dered product of arbitrary derivatives of φ. Evaluating such products
on the diagonal (when all points are the same), we obtain composite
operators attached to any differential monomials (hence polynomials)
with respect to φ, such as : φ3(x) : , : φxiφxj :, etc.

Exercise 11.16. Derive a formula for the correlation function of sev-
eral composite operators (evaluated at different points) in the theory of
the scalar boson.

In particular, we can now consider the product of two composite op-
erators, e.g. : φ2(x) : φ(y). Of course, this has a singularity at x = y,
and an important problem is to understand the nature of this singu-
larity. This is achieved by the procedure called the operator product
expansion, which replaces the non-existent multiplication of composite
operators.
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To explain this procedure, consider first the simplest example of
operator product:

φ(x)φ(y) = G(x− y)+: φ(x)φ(y) : .

Using Taylor’s formula, this can be rewritten so that the right hand
side only contains φ(y) and no φ(x):

φ(x)φ(y) = G(x− y) +
∑
n

(x− y)n

n!
: ∂nφ(y) · φ(y) : ,

where n := (n1, ..., nd+1), (x− y)n :=
∏

i(xi − yi)ni , ∂n :=
∏

i ∂
ni
xi

, and
n! :=

∏
i ni!. In this sum, all terms except the first one are regular

(i.e., continuous) at x = y.
Let us now try to write down a similar expansion for a more compli-

cated example of operator product, : φ2(x) : φ(y). We have

〈 : φ2(x) : φ(y)φ(z1)...φ(zk)〉 = 2G(x− y)〈φ(x)φ(z1)...φ̂(zj)...φ(zk)〉+∑
j,m,n distinct

G(x−zj)G(x−zm)G(y−zn)〈φ(z1)...φ̂(zj)...φ̂(zm)...φ̂(zn)...φ(zk)〉.

Thus we get

: φ2(x) : φ(y) = 2G(x− y)φ(y)+: φ2(x)φ(y) : .

As before, using Taylor’s formula, this can be rewritten so that the
right hand side only contains φ(y) and no φ(x):

: φ2(x) : φ(y) = 2G(x−y)φ(y)+
∑
n,m

(x− y)n+m

n!m!
: ∂nφ(y)·∂mφ(y)·φ(y) : .

And again, all terms except the first one are regular at x = y.
As a final example, consider the product : φ2(x) : · : φ2(y) : . A sim-

ilar computation yields

: φ2(x) : · : φ2(y) : = 2G2(x−y)+4G(x−y) : φ(x)φ(y) : +: φ2(x)φ2(y) : ,

and as before we can expand this to remove φ(x) using Taylor’s formula.
Namely, expanding the second summand, we get

: φ2(x) : · : φ2(y) : =

2G2(x− y) + 4G(x− y)
∑
n

(x− y)n

n!
: ∂nφ(y) · φ(y) : +: φ2(x)φ2(y) : ,

and the last summand can be expanded similarly. We now see that
there are many singular terms: G(x) behaves as |x|1−d for d > 1 and
as log |x| for d = 1, so the singular terms are the ones with |n| ≤ d− 1,
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where |n| :=
∑

i ni. For example, for d = 2 for the massless boson we
have

: φ2(x) : · : φ2(y) : =

2

|x− y|2
+

4

|x− y|
: φ2(y) : +

3∑
j=1

4

|x− y|
(xj−yj) : ∂xiφ(y)·φ(y) : + regular.

Yet we see that the number of singular terms is finite. In fact, it is
not hard to prove the following proposition (see [QFS], vol 1, p.449).

Proposition 11.17. Let A,B be two composite operators in the the-
ory of scalar boson. Then there exist a unique collection of functions
Fj(y) and composite operators Cj(y) such that we have an asymptotic
expansion

A(x)B(y) ∼
∑
j

Fj(x− y)Cj(y), x→ y

such that for every N we have |Fj(z)| = O(|z|N), z → 0, for all but
finitely many j. In particular, there are finitely many singular terms
(not continuous at x = y).

The expansion of Proposition 11.17 is called the operator product
expansion. It is not hard to show that it exists in any free quantum
field theory.

11.12. Symmetries in quantum field theory. In studying any phys-
ical system, it is crucial to find all its symmetries and use them to their
full potential. For example, the equations of motion of a particle in a
rotationally symmetric potential field can be fully solved by utilizing
the rotational symmetry (see [A]).

The most fundamental fact about symmetries in classical or quan-
tum mechanics is that for any 1-parameter group of symmetries of the
system there is an (essentially unique) observable responsible for this
symmetry, which is conserved in this system; i.e., every 1-parameter
symmetry corresponds to a conservation law, and vice versa. This
statement is called Noether’s theorem.

Let us first explain the precise meaning of Noether’s theorem in the
setting of classical mechanics. Suppose we have a system with phase
space a symplectic manifold (M,ω) (typically M = T ∗X, where X is
the configuration space, and ω = dα is the differential of the Liouville
form) and hamiltonian H ∈ C∞(M). Let gt be a 1-parameter group
of symmetries of this system, i.e., of symplectic diffeomorphisms of M
which preserve H. Let v := d

dt
|t=0g

t be the vector field generating the
flow gt. Then we have Lvω = 0 (i.e., v is a symplectic vector field,
so ωv := ω(v, ?) is a closed 1-form), and LvH = 0. Let us assume
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that M is simply connected (for example, we can restrict ourselves to
a neighborhood of a point in M or X). In this case ωv is exact, so
there exists Q ∈ C∞(M) (unique up to adding a constant) such that
ωv = dQ. Then for any observable F ∈ C∞(M) we have LvF = {Q,F}.
Moreover {Q,H} = LvH = 0. The observable Q is thus conserved
under the hamiltonian flow and is the conservation law corresponding
to the 1-parameter group gt. It is called (especially in the setting of
field theory) the Noether (conserved) charge of the symmetry.

A trivial example of this is the hamiltonian flow ht defined by the
hamiltonian H itself, i.e., the time translation symmetry; in this case
Q = H, so the corresponding conserved quantity is H (the energy).
Other examples include the momenta p1, ..., pn which corresponds to
translation symmetry (for X = Rn) and angular momenta Mkj :=
xkpj − xjpk corresponding to rotational symmetries around the codi-
mension 2 hyperplanes xk = xj = 0.

More generally, suppose G is a Lie group acting (on the right) by
symmetries of the system. Let g = LieG be the Lie algebra of G. Any
element y ∈ g gives rise to a 1-parameter subgroup ety ∈ G, so defines
a conserved quantity Qy such that

{Qy, F} = y · F := d
dt
|t=0e

ty · F

for each F ∈ C∞(M), where (g · F )(m) = F (mg), m ∈ M . More
precisely, Qy is defined only up to adding a constant, so let us fix some
linear assignment y 7→ Qy.

Moreover, it is clear that for y, z ∈ g

{Qy, Qz} = Q[y,z] + C(y, z),

where C(y, z) is a skew-symmetric bilinear form on g which arises be-
cause Qy is uniquely determined by y only up to adding a constant.
Furthermore, by the Jacobi identity, the form C is a 2-cocycle :

C([x, y], z) + C([y, z], x) + C([z, x], y) = 0.

It follows that the assignment y 7→ Qy is almost a homomorphism
g→ C∞(M), but not quite: rather, it defines a homomorphism

µ : ĝ→ C∞(M),

where ĝ := g ⊕ R is a 1-dimensional central extension of g with com-
mutator

[(y, a), (z, b)] = ([y, z], C(y, z)).

Namely, µ(y, a) = Qy + a.
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The map µ may be viewed as an element of C∞(M) ⊗ ĝ∗, i.e., geo-
metrically as a C∞-map

µ : M → ĝ∗.

This map is called the moment map and plays a fundamental role in
symplectic geometry.

The following example shows that the cohomology class of C may be
nonzero, which means that we may not be able to choose Qy to make
C = 0.

Example 11.18. The group R2n acts on M = T ∗Rn (with trivial
hamiltonian H = 0) by translations. So we have g = R2n and C(y, z) =
ω(y, z). Thus ĝ is the Heisenberg Lie algebra R2n⊕R with commutation
relations

[(y, a), (z, b)] = ([y, z], C(y, z)),

which is a non-trivial central extension of g.

However, in many examples the cohomology class [C] ∈ H2(g) is,
in fact, zero, i.e., ĝ = g ⊕ R as Lie algebras. For instance, this is
automatically so if H2(g) = 0 (e.g., if G is a compact Lie group). In
this case, we may choose Qy so that C = 0, and we have a moment
map

µ : M → g∗.

For example, for translation symmetries of the free particle, µ is the
momentum p of the particle, which explains the terminology “moment
map”.

A similar discussion applies to classical field theory, using the for-
malism of Subsection 11.6. Namely, in this case, the Noether charge
is given by the integral over the space of a certain local field called
Noether current.

For example, consider the free massive boson φ on the spacetime
Rd × R. The Hamiltonian is

H =
1

2

∫
X

(φ2
t + |dxφ|2 +m2φ2)dx.

Thus H =
∫
Rd Jdx where

(11.3) J =
1

2
(φ2

t + |dxφ|2 +m2φ2) =
1

2
(: φ2

t : +
d∑
j=1

: φ2
xj

: +m2 : φ2 :)

is the Noether current associated to the time translation symmetry.
Similarly, the Noether current for the spacial translation in the i-th

coordinate is

(11.4) Jk = φtφxk .
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Indeed, using the formulas of Subsection 11.6, we have

{Jk(x), φ(y)} = −φxk(x)δ(x− y), {Jk(x), φt(y)} = φt(x)δxk(x− y).

Thus defining the charge

Pk =

∫
Rd
Jk(x)dx,

using integration by parts, we get

{Pk, φ(y)} = −φxk(y), {Pk, φt(y)} = −φtxk(y),

as needed.
Furthermore, this discussion extends to quantum theory, with ob-

servables replaced by operators as usual. Namely, in this case, we have
a unitary projective representation π : G → Aut(H) of the Lie group
G of symmetries on the Hilbert space H of quantum states of the sys-

tem, so that [π(g), Ĥ] = 0, where Ĥ : H → H is the hamiltonian
(an unbounded self-adjoint operator). The quantum Noether charges
corresponding to these symmetries simply define the corresponding Lie
algebra representation π∗ : g → End(S), where S is a certain dense
subspace of H (of smooth vectors) on which all the operators π∗(y) are
defined. For instance, in quantum mechanics, like in classical one, the

time translation corresponds to the Hamiltonian Ĥ, the spacial trans-
lations to the momentum operators p̂j := −i~∂xj , and rotations around
xk = xj = 0 to the angular momentum operators

M̂kj := −i~(xk∂j − xj∂k).
Finally, in quantum field theory, by analogy with classical one, a

quantum Noether charge is an operator of the form

Q =

∫
Rd
J(x)dx,

where J(x) is a quantum local operator called the quantum Noether
current. For example, in the case of a free massive boson, the cur-
rents J(x) and Jk(x) for time and space translations are given by the
same formulas (11.3),(11.4), but now with φ(x, t) being the quantum
field corresponding to the massive boson (say, in the setting of Wight-
man axioms) rather than the classical field, and with normal ordered
product instead of the usual product:

J =
1

2
(: φ2

t : +
d∑
j=1

: φ2
xj

: +m2 : φ2 : ),

Jk =: φtφxk : ,
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and the corresponding charges, as in the classical case, are given by
integration of the current over the space. For example, for the free
boson

(11.5) Ĥ =

∫
Rd
J(x)dx

is the quantum hamiltonian, and

P̂k :=

∫
Rd
Jk(x)dx

are the quantum momentum operators.

11.13. Field theories on manifolds. As already mentioned above,
an important feature of classical and quantum field theory is the possi-
bility to consider them not just on a Euclidean or Minkowskian space,
but more generally on Riemannian and Lorentzian manifolds. The
main examples are theories on X × R, where X is a Riemannian d-
dimensional space manifold with metric gijdx

idxj (Einstein summa-
tion) and R is the time line, with Lorentzian metric

|dx|2 := (dt)2 − gijdxidxj,

and Euclidean theories on a Riemannian d + 1-dimensional spacetime
manifold M .

Here we will consider only classical field theories on manifolds. These
theories can then be quantized using either Lagrangian or Hamiltonian
approach, but we will not discuss this, except in some examples. The
story is parallel to the case of flat space considered above, but we should
make sure that the kinetic term and other terms in the Lagrangian are
defined canonically (i.e., do not depend on the choice of coordinates).
For simplicity consider the Euclidean case (in the Lorentzian case the
story is similar). We restrict ourselves to reviewing the most common
types of classical fields in such theories, as well as the corresponding
kinetic and other terms in their Lagrangians. A more complete discus-
sion can be found in [QFS].

1. Scalar (bosonic) fields. In the simplest case a scalar field is
just a real function on M (real scalar), but one can also consider scalars
valued in a finite dimensional real vector space with a positive inner
product (for example, C, for complex scalars) or, more generally, valued
in a real vector bundle on M . The kinetic term for a scalar φ : M → E
valued in a vector space E ∼= E∗ with inner product is |dφ(x)|2, the
squared norm of the vector dφ ∈ Tφ(x)M ⊗E with respect to the inner
products on Tφ(x)M and E. Thus if this vector has components (dφ)ij
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in orthonormal bases then

|dφ|2 =
∑
i,j

(dφ)2
ij.

More generally, if E is a vector bundle on M then we need to fix an
inner product on E (i.e., E should be an orthogonal bundle) and also
a connection A preserving this inner product, which gives rise to the
covariant derivative operator ∇A; if E is trivialized on a local chart
U ⊂ M then A becomes a 1-form on U with values in o(E) and we
have ∇A = d+A. In this case, an E-valued scalar field φ is a section of
E over M , and the kinetic term is |∇Aφ|2, which in local trivialization
has the form |dφ+ Aφ|2.

Note that for a scalar field φ, we can always add to the kinetic term
a mass term m2|φ|2, where m2 is a real number. More generally, we
can add a mass term (φ,Qφ), where Q is a self-adjoint endomorphism
of E.

2. Spinor (fermionic) fields. Spinor fields can be defined on a spin
manifold M , i.e., an oriented manifold equipped with a spin structure
(a lift of the tangent bundle from SO(n) to Spin(n)). For such a man-
ifold, we have the canonically defined spin bundle SM , which is the
associated bundle to the above Spin(n) bundle via the spin represen-
tation Spin(n)→ Aut(S). This bundle carries a natural inner product
and a connection induced by the Levi-Civita connection of M that pre-
serves this inner product. Moreover, as explained in Subsection 11.3,
in even dimensions we have S = S+⊕S−, where S+, S− are irreducible
representations of Spin(n), so we have SM = SM+⊕SM−, an orthogonal
decomposition of SM into two subbundles.

Spinor fields, in the most basic case, are sections of the Spin bundle
SM . The sections of SM+ and SM−, as noted in Subsection 11.4, are
called chiral spinors.

The possible kinetic and mass terms for spinors on the flat space
are described in Subsection 11.4, and the story on the curved manifold
is similar. The only new feature is that we have to define the Dirac
operator D for a spinor field on an arbitrary spin manifold. To this
end, all we have to do is replace ordinary partial derivatives in formula
(11.2) by the covariant ones with respect to the Levi-Civita connection:

(11.6) D =
∑
i

Γi∇LC
i .

More generally, similar to the scalar field case, we may consider
spinors valued in a vector bundle E with an inner product and an
orthogonal connection A, i.e., sections of the bundle SM ⊗ E. This
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bundle carries a tensor product connection ∇total = ∇LC ⊗ ∇A, and
the Dirac operator is defined by the formula

D =
∑
i

Γi∇total
i .

3. Gauge fields. Let G be a compact Lie group g = LieG equipped
with a positive invariant inner product. Gauge fields are connections A
on principal G-bundles E on M , so in local trivialization A is a 1-form
on M with values in g and the covariant derivative with respect to A
looks like ∇A = d+A. The connection A has curvature FA (called field
strength in physical terminology), which is a 2-form on M with values
in the adjoint bundle adE. In local trivialization the curvature of A is
the Maurer-Cartan form

FA = dA+
1

2
[A,A].

In particular, if G is abelian then we just have FA = dA. The kinetic
term for a gauge field A is |FA|2, where the squared norm is taken
with respect to the inner product on (∧2T ∗M ⊗ adE)x induced by
the inner products on TxM and g (note that this does not depend on
the identification of Lie algebras (adE)x ∼= g since the form on g is
invariant).

It makes sense to fix the topological type of the C∞-bundle E (which
does not change under deformations) and consider the space Conn(E)
of all connections A on E. If A1, A2 ∈ ConnE then ∇A1 − ∇A2 ∈
Ω1(M) ⊗ adE, so Conn(E) is an affine space with underlying vector
space Ω1(M)⊗ adE. Moreover, this space carries a natural right affine
linear action of the gauge group GE = C∞(M,E), which in local trivi-
alization looks like

Ag = g−1dg + g−1Ag.

The configuration space of a classical gauge theory is then

M := t topological types EConn(E)/GE,
so the phase space is the cotangent bundle T ∗M.
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