
13. Two-dimensional conformal field theory

13.1. Classical free massless scalar in two dimensions. Consider
a free massless scalar boson φ on R2 with Lagrangian L = 1

2
(dφ)2. In

this case the local functional φ(t, x) satisfies the 2-dimensional wave
(=string) equation

φtt − φxx = 0,

so it splits into a sum of two functionals

φ = 1√
2
φL + 1√

2
φR,

where

φL(t, x) = ψL(x+ t), φR(t, x) = ψR(x− t),
which for obvious reasons are called the left-mover and right-mover. In
other words, we have

(∂t − ∂x)φL = 0, (∂t + ∂x)φR = 0.

So we get

φx + φt =
√

2ψ′L(x+ t), φx − φt =
√

2ψ′R(x− t).

So the Poisson bracket of ψ′L, ψ
′
R is given by

{ψ′L(x), ψ′L(y)} = δ′(x− y), {ψ′R(x), ψ′R(y)} = −δ′(x− y),

{ψ′L(x), ψ′R(y)} = 0.

Thus upon Wick rotation, which replaces t with it and makes φ
complex-valued, setting u := x+ it, we have

∂uφL = 0, ∂uφR = 0,

i.e., φL = ψL(u) is holomorphic and φR = ψR(u) is antiholomorphic.
Now consider the case when x runs over the circle R/2πZ, with

Lebesgue measure normalized to have volume 1. Then, if we still want
to have a decomposition of φ into a left-mover and a right-mover, we
should “kill the zero mode” by requiring that

∫ 2π

0
φ(t, x)dx = 0 (oth-

erwise we have a solution φ(t, x) = t of the string equation which
cannot be written as a sum of a left-moving and right-moving periodic
wave). Then we may introduce the coordinate z = eiu which takes
values in C×, and φL, φR become holomorphic, respectively antiholo-
morphic fields on C×, which we’ll denote by ϕ, ϕ∗. So we have Laurent
expansions

ϕ(z) =
∑
n∈Z

ϕnz
−n, ϕ∗(z) =

∑
n∈Z

ϕ∗nz
−n,
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with ϕ0 = ϕ∗0 = 0. When z is on the unit circle, these are just the
Fourier expansions of φL(0, x), φR(0, x), and for

a(z) =
∑
n∈Z

anz
−n−1 := i∂zϕ(z), a∗(z) =

∑
n∈Z

a∗nz
−n−1 := −i∂zϕ∗(z),

where a0 = a∗0 = 0, we have

za = ∂uφL = ψ′L(u), za∗ = ∂uφR = ψ′R(u).

Thus for z = eiu, w = eiv we get

(13.1) {za(z), wa(w)} = δ′(u− v).

Note that

δ′(u− v) = i
∑
n∈Z

nznw−n.

So setting

δ(w − z) :=
∑
n∈Z

znw−n−1

(Fourier expansion of the distribution δ(w − z) on (S1)2, where |z| =
|w| = 1), we can write (13.1) as

(13.2) {a(z), a(w)} = −iδ′(w − z).

In components, this takes the form

{
∑
m∈Z

amz
−m,

∑
n∈Z

a−nw
n} = −i

∑
n∈Z

nz−nwn.

Thus we get

(13.3) {an, am} = −inδn,−m.

Similarly,

(13.4) {a∗n, a∗m} = inδn,−m,

and

(13.5) {an, a∗m} = 0,

which in terms of generating functions can be written as

(13.6) {a∗(z), a∗(w)} = iδ′(w − z), {a(z), a∗(w)} = 0.

Finally, let us write down the hamiltonian of the theory in terms of the
Fourier (=Laurent) modes an. Recall that in the original notation it
has the form

H =
1

2

∫
R/2πZ

(φ2
t + φ2

x)dx.
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Thus we have

H =
1

4

∫
R/2πZ

((za∗− za)2 + (za∗+ za)2)dx =
1

2

∫
R/2πZ

(z2a∗2 + z2a2)dx,

i.e.,

(13.7) H =
∑
n>0

(a−nan + a∗−na
∗
n).

It satisfies the relations

{am, H} = −imam, {a∗m, H} = ima∗m.

13.2. Free quantum massless scalar on R × R/2πZ with killed
zero mode. Consider now the free QFT of a massless scalar boson
φ on R× R/2πZ with Minkowskian metric dt2 − dx2, with killed zero
mode, i.e., a quantization of the classical field theory described in Sub-
section 13.1. Since this is not a theory on a vector space, it won’t satisfy
Wightman axioms. However, we can naturally quantize the commu-
tation relations (13.3),(13.4),(13.5) (with ~ = 1), by replacing them
with

[an, am] = nδn,−m, [a∗n, a
∗
m] = −nδn,−m, [an, a

∗
m] = 0.

In other words, for a(z) =
∑

n∈Z anz
−n−1, a∗(z) =

∑
n∈Z a

∗
nz
−n−1 we

have

[a(z), a(w)] = δ′(w− z), [a∗(z), a∗(w)] = −δ′(w− z), [a(z), a∗(w)] = 0,

which quantize equations (13.2),(13.6) (this is a field-theoretic gener-
alization of the analysis of Subsection 8.5, with an infinite sequence of
harmonic oscillators labeled by positive integers). Thus we see that the
Euclidean space-locality property is satisfied.

This shows that we have an infinite system of independent harmonic
oscillators. To restate this algebraically, consider the infinite dimen-
sional Heisenberg Lie algebra A with basis an, n 6= 0 and K (central)
with commutation relations

[an, am] = nδn,−mK.

Then we see that some dense subspace of the Hilbert space H of our
theory should carry a pair of commuting actions of A (by left-movers
and right-movers), with K acting by 1 and −1, respectively (we’ll de-
note the second copy of A by A∗).

Let us now describe the Hilbert spaceH. Note that the Lie algebraA
has an irreducible Fock representation F generated by Ω with defining
relations

anΩ = 0, n > 0, KΩ = Ω.
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As a vector space, F is the Fock space

F = C[X1, X2, ...]

(with Ω = 1), on which the operators a−n for n > 0 act by multiplica-
tion by Xn and an act by n ∂

∂Xn
.

Now, the hamiltonian of the system (which we rescale for convenience
by a factor of 2) should satisfy the commutation relations

[Ĥ, an] = −nan, [Ĥ, a∗n] = na∗n.

Thus we see that if we want the spectrum of Ĥ to be bounded below

and if Ω ∈ H is the lowest eigenvector of Ĥ then we must have

anΩ = 0, a∗−nΩ = 0

for n > 0. But in this case the space D generated from Ω by the
action of an, a

∗
n has to be the irreducible representation F ⊗ F∗ of

the Lie algebra A ⊕ A∗, where F∗ := C[X∗1 , X
∗
2 , ...] with a∗n acting by

multiplication by X∗n and a∗−n 7→ n ∂
∂X∗n

for n > 0.

Thus the space D is the tensor product of polynomial algebras C[Xj]
and C[X∗j ]. Each of the algebras C[Xj] carries a positive inner product

with Xn
j being an orthogonal basis and ||Xn

j ||2 = jnn!, and similarly
for C[X∗j ]. This yields a positive inner product 〈 , 〉 on F ,F∗ and D,

with respect to which a†i = a−i and a∗†i = a∗−i. The Hilbert space H is
the completion of D with respect to 〈 , 〉.

This implies that the quantum Hamiltonian has to be given by the
formula

Ĥ =
∑
n>0

(a−nan + a∗na
∗
−n) + C

obtained by quantizing the classical hamiltonian (13.7) (note that the
annihilation operators are written on the right to make sure the infinite

sum makes sense). We may write Ĥ as the sum of left-moving and
right-moving parts:

Ĥ = ĤL + ĤR,

where

ĤL :=
∑
n>0

a−nan + C
2
, ĤL :=

∑
n>0

a∗na
∗
−n + C

2
.

13.3. ζ-function regularization. At the moment it is not clear what
the right value of C should be. To answer this question, recall that the
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hamiltonian of a single harmonic oscillator is z∂z + 1
2

acting on C[z].

This suggests that the formula for Ĥ should be

Ĥ =
∑
n>0

(a−nan + a∗na
∗
−n + n) =

1

2

∑
n6=0

(a−nan + a∗na
∗
−n),

which is a more symmetric and natural formula for quantization of H.
This formula, however, does not make sense, since the series

1 + 2 + 3 + ...

is divergent. We may, however, regularize it using ζ-function regular-
ization.

Namely, recall that the Riemann ζ-function is defined by the formula

ζ(s) =
∞∑
n=1

n−s.

It is well known that this function extends meromorphically to the
entire complex plane with a unique (simple) pole at s = 1 and satisfies
the functional equation, which says that the function π−

s
2 Γ( s

2
)ζ(s) is

symmetric under the change s 7→ 1− s:

ζ(1− s) = π
1
2
−s Γ( s

2
)

Γ(1−s
2

)
ζ(s).

Now, it is natural to define

C = 1 + 2 + 3 + ... := ζ(−1).

But the functional equation for s = 2 implies that

ζ(−1) =
π−

3
2

Γ(−1
2
)
ζ(2) = −π

− 3
2

2π
1
2

π2

6
= − 1

12
.

So from this point of view it is natural to set

C := − 1

12

Remark 13.1. Recall that for integer g ≥ 1

ζ(2g) = (−1)g+122g−1 B2g

(2g)!
π2g.

So the functional equation for ζ implies that

ζ(1− 2g) = π
1
2
−2g Γ(g)

Γ(1
2
− g)

· (−1)g+122g−1 B2g

(2g)!
π2g = −B2g

2g
.

Thus the Harer-Zagier theorem can be interpreted as the statement
that the Euler characteristic of the moduli space of curves of genus g
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is ζ(1− 2g). In particular, for g = 1 we get the Euler characteristic of
SL2(Z), which is − 1

12
.

13.4. Modularity of the partition function. The value−1/12 turns
out indeed to be the most natural value of C. To see this, let us return
to Euclidean signature |du|2 = dt2 + dx2 and put our theory on the
complex torus E = Eτ = C×/qZ ∼= R/2πTZ× R/2πZ, where

T > 0, τ = iT, q = e2πiτ = e−2πT ∈ (0, 1).

In this case, as we know from quantum mechanics, we should consider
the partition function

Z(τ) := Tr(e2πiτĤ).

Note that
Ĥ(P ⊗Q) = (degP + degQ+ C)P ⊗Q,

where P ∈ F and Q ∈ F∗, and the degree is given by

deg(Xn) = deg(X∗n) = n.

Thus we have

Z(τ) =
e2πiτ(C+ 1

12
)

η(τ)2
,

where

η(τ) := q
1
24

∞∏
n=1

(1− qn)

is the Dedekind η-function. Now recall that η(τ) is a modular form of
weight 1

2
, namely,

η(− 1
τ
) =
√
−iτ · η(τ).

So the partition function Z has a nice modular property for a unique
value of C, which is exactly − 1

12
.

Let us explain why we should expect Z(τ) to have a modular prop-
erty.

For this, note that the Lagrangian of the theory

L(φ) =
1

4π

∫
E

(dφ)2 =
1

4π

∫
E

dφ ∧ ∗dφ

is conformally invariant, as it is written purely in terms of the Hodge
*-operator which depends only on the conformal structure on E. The
same is true for the equation of motion, which is the Laplace’s equation
∆φ = 0. In other words, our classical field theory is conformal. Thus
we could hope that the corresponding quantum theory is conformal as
well. This should mean that Z(− 1

τ
) = Z(τ), since the complex tori

E− 1
τ

and Eτ are conformally equivalent.
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This said, we note that this modular property is only satisfied up to
a linear factor in τ : in fact, we have

Z(− 1
τ
) = −iτZ(τ).

This is because we have killed the zero mode, which we should, in fact,
have included (after all, the space cycle in the torus Eτ is not SL2(Z)-
invariant, hence neither is the condition that the integral of φ over this
cycle vanishes). This is done in the next subsection.

13.5. Including the zero mode. The zero mode corresponds to the
periodic solutions φ(t, x) = α + µt of the string equation (α, µ ∈ R),
which for nonzero µ cannot be split into a left-moving and right-moving
periodic wave. So putting back the zero mode corresponds to replacing
the Hilbert space H with Hfull := H ⊗ L2(R), where L2(R) is the
Hilbert space of a quantum-mechanical free massless particle, and the

Hamiltonian Ĥ by

Ĥfull := Ĥ + µ̂2,

where µ̂ is the quantum momentum operator for this quantum mechan-
ical particle, acting on L2(R) by multiplication by the momentum µ.
Thus we may write

Hfull =

∫
R
Hµdµ,

with Hµ = Fµ ⊗F∗µ where Fµ = F but with a0 = µ instead of a0 = 0,
and similarly F∗µ = F∗ but with a∗0 = µ instead of a∗0 = 0. Then we
still have

Ĥ = ĤL + ĤR,

where

ĤL = 1
2
a2

0 +
∑
n>0

a−nan − 1
24
, ĤR = 1

2
a∗20 +

∑
n>0

a∗na
∗
−n − 1

24
.

According to Remark 8.29, the partition function of such a parti-
cle when time runs over R/LZ is, up to scaling, L−

1
2 . Thus the full

partition function should be

Z(τ) = (−iτ)−
1
2Z(τ).

And then we have the genuine modular property:

Z(− 1
τ
) = Z(τ).

We note that the function Z(τ) has a natural extension to arbitrary
τ ∈ C+ (not necessarily purely imaginary), which is just the path
integral over a “non-rectangular” complex torus Eτ . To explain this,
note that we have a natural action of the translation group R/2πZ
on our spacetime, hence we should expect its action on the Hilbert
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space H. The infinitesimal generator D of this group should satisfy
the commutation relations

[D, an] = nan, [D, a∗n] = na∗n

(which differs from the corresponding relations for Ĥ by the sign in the
first relation). As DΩ = 0, it follows that

D(P ⊗Q) = (degP − degQ)P ⊗Q,

i.e.,

D = ĤL − ĤR.

Let s ∈ R and τ := iT +s. Then a twisted version of the Feynman-Kac
formula implies that given s ∈ R, we have

Z(τ) = Tr(e−2πTĤe2πisD) = |q|−
1
12 Tr(qĤLqĤR),

where q = e−2π(T+is) = e2πiτ . Thus we still have

Z(τ) =
1

|η(τ)|2
.

Hence

Z(τ) =
1√

Imτ |η(τ)|2
,

which is a (real analytic) modular function for SL(2,Z), i.e., invariant
under τ 7→ aτ+b

cτ+d
for a, b, c, d ∈ Z, ad − bc = 1. Thus here we have a

genuine quantum conformal symmetry (as the moduli of complex tori
Eτ is exactly C+/SL2(Z)). Indeed, this function is obviously symmetric
under τ 7→ τ + 1, and we’ve seen that it is invariant under τ 7→ −1/τ ,
but these two transformations generate SL2(Z).

13.6. Correlation functions on the cylinder and torus. We may
also consider correlation functions of the quantum fields a and a∗. They
are computed separately in F and F∗ and can be easily found using
representation theory. For example, we have ana−nΩ = nΩ for n > 0,
so the 2-point function is given by

〈Ω, a(z)a(w)Ω 〉 =
∞∑
n=1

nz−n−1wn−1 =
1

(z − w)2
.

More precisely, the series converges only for |w| < |z|, but the function
analytically continues to all z 6= w. Since our theory is free, the higher
correlation functions are given by Wick’s formula:
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Proposition 13.2. We have

〈Ω, a(z1)....a(z2k)Ω 〉 =
∑
σ∈Π2k

1∏
j∈[1,2k]/σ(zj − zσ(j))2

,

and the 2k + 1-point correlation functions are zero.

We note that since F is generated by Ω as an A-module, these func-
tions determine a(z) as a local operator (=quantum field). More gener-
ally, they determine the operators a(z1)...a(zr) when zi 6= zj, which are
symmetric in z1, .., zr due to space locality. However, these operators
are not well defined (have poles) on the diagonals zi = zj.

Exercise 13.3. Give a direct algebraic proof of Proposition 13.2.

Exercise 13.4. Compute the normalized 2-point correlation function
of the quantum field ã(z) := za(z) on the torus E := R/2πTZ×R/2πZ
in terms of theta functions.

Hint. This correlation function is given by

〈 ã(z)ã(w) 〉E
〈 ∅ 〉E

= TrF(ã(z)ã(w)e−2πTĤL).

13.7. Infinitesimal conformal symmetry: the Virasoro algebra.
We have already pointed out that the theory of a free massless scalar
in two dimensions is classically conformally invariant and saw some
manifestations of the fact that this invariance survives at the quantum
level (modular invariance of the partition function on the torus). How-
ever, to study conformal symmetry systematically, we need to consider
infinitesimal conformal symmetry, given by “infinitesimal conformal
mappings”, i.e., holomorphic vector fields on C×.

For simplicity we consider polynomial vector fields P (z)∂z where P
is a Laurent polynomial (this is sufficient since polynomial fields are
dense in all holomorphic vector fields in an appropriate topology). Such
vector fields form a Lie algebra called the Witt algebra (or centerless
Virasoro algebra in the physics literature), and we’ll denote it by W .
A convenient basis of W is {Ln = −zn+1∂z, n ∈ Z} which satisfies the
commutation relations

[Ln, Lm] = (n−m)Lm+n, m, n ∈ Z.
The Lie algebra W acts by symmetries of the classical field theory of

a free massless scalar, since its Lagrangian is conformally invariant. In
fact, importantly, this action is only R-linear and not C-linear, which is
a good thing - this means that we have an action of the complexification
WC = W ⊕W ∗, where W ∗ is the Lie algebra of antiholomorphic vector
fields; in other words, we have two commuting actions of W .
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If our theory is quantum-mechanically conformally invariant, then
the Lie algebra W ⊕W ∗ should act on the space D in a way compatible
with the action of A⊕A∗, i.e., so that

[Ln, a(z)] = zn+1a′(z) + (n+ 1)zna(z),

[L∗n, a
∗(z)] = zn+1a∗′(z) + (n+ 1)zna∗(z),

[L∗n, a(z)] = [Ln, a
∗(z)] = 0,

or in components

[Ln, am] = −mam+n, [L∗m, a
∗
n] = −ma∗m+n, [Ln, a

∗
m] = [L∗n, am] = 0.

Is there such an action? To figure this out, first note that the operators

L0, L
∗
0 satisfy the same commutation relations with a, a∗ as ĤL,−ĤR

respectively. Since D is an irreducible A⊕A∗-module, this means that
by Schur’s lemma we must have

L0 = ĤL + CL, L
∗
0 = −ĤR + CR

for some constants CL, CR. This shows that Ln has to shift the grading
in F by n, and similarly for L∗n and F∗.

Now by analogy with the formula

L0 =
∑
k≥1

a−kak + const,

define for n 6= 0

(13.8) Ln :=
1

2

∑
k∈Z

a−kak+n.

It is easy to check that this operator on F (and hence on D = F ⊗F∗)
is well defined, and satisfies the desired commutation relations

[Ln, a(z)] = −zn+1a′(z) + (n+ 1)zna(z), [Ln, a
∗(z)] = 0.

Again using irreducibility of D and Schur’s lemma, we see that if the
desired action of W exists at all, then Ln must be given by formula
(13.8) (note that here we can’t add a constant since Ln must shift the
degree). So it remains to check if the constructed operators satisfy the
commutation relations of W .

First assume n 6= −m. In this case using the Jacobi identity, we
see that the operator [Ln, Lm]− (n−m)Lm+n commutes with a, a∗, so
again by Schur’s lemma it must be a constant; however, since it shifts
degree, we get the desired relation

[Ln, Lm]− (n−m)Lm+n = 0.
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So it remains to consider the case n = −m > 0. In this case the same
argument shows that

[Ln, L−n]− 2nL0 = C(n),

where C(n) ∈ C, and we have an action of W if C(n) = 0 for all n. So
let us compute C(n). To this end, note that the eigenvalue by which
[Ln, L−n] acts on Ω is 2nCL + C(n). So it suffices to compute this
eigenvalue, i.e., the vector LnL−nΩ.

In terms of the polynomial realization, we have

L−nΩ = 1
2

∑
0<j<n

XjXn−j.

Thus

LnL−nΩ = 1
4

∑
0<j<n

j(n−j) ∂2

∂Xj∂Xn−j

∑
0<j<n

XjXn−j = 1
2

∑
0<j<n

j(n−j) =
n3 − n

12
.

So

C(n) =
n3 − n

12
.

Thus we see that we almost have an action of W , but not quite -
no matter how we choose CL, the cubic term in n will be present (a
quantum anomaly)! Instead, we have a projective representation of W ,
which is, in fact, a representation of a central extension of W . Such
projective actions are, in fact, common in quantum mechanics, since
quantum states correspond not to actual unit vectors in the space of
states, but rather to vectors up to a phase factor, on which (as well as on
quantum observables) there is a genuine action of the symmetry group.
Prototypical examples of this are the Heisenberg uncertainty relation
[p̂, x̂] = −i~, when the classical 2-dimensional group (or Lie algebra)
of translations of the phase plane is replaced in quantum theory by the
3-dimensional Heisenberg group (Lie algebra), and the phenomenon of
spin, when the classical rotational symmetry group SO(3) is replaced
in quantum theory by its double cover SU(2).

This motivates the following definition.

Definition 13.5. The Virasoro algebra is the 1-dimensional central
extension of the Witt algebra W with basis Ln, n ∈ Z and C (a central
element) with commutation relations

[Ln, Lm] = (n−m)Lm+n +
n3 − n

12
δn,−mC.

Thus we have a 1-dimensional central ideal CC ⊂ Vir spanned by
C, and Vir/CC ∼= W .

So we obtain
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Theorem 13.6. The formulas

L0 =
∑
k≥1

a−kak, Ln = 1
2

∑
k∈Z

a−kak+n, n 6= 0

define an action of Vir on F with C acting by 1.

It is easy to check that the same theorem holds more generally on
the space Fµ where a0 = µ. The only change is that L0 acquires an
additional summand 1

2
µ2:

L0 = 1
2
µ2 +

∑
k≥1

a−kak.

If C acts on a representation V of Vir by a scalar c (as it will, for
instance, on every irreducible representation) then one says that V has
central charge c. Thus Fµ is a representation of Vir of central charge
c = 1.

Similarly, the formulas

L∗0 = −1
2
µ2 −

∑
k≥1

a∗ka
∗
−k, L

∗
n = −1

2

∑
k∈Z

a∗ka
∗
−k+n, n 6= 0

define an action of Vir on F∗µ with the central element C∗ acting by
−1 (i.e., of central charge c = −1).

Thus we obtain two commuting projective actions of W on the space
D = F ⊗ F∗ which define usual linear actions only for the central
extension Vir of W . Still, the corresponding adjoint action of W on
quantum observables is a genuine linear action, so this quantum field
theory is conformal.

We note that the Virasoro action preserves the positive Hermitian
form on Fµ in the sense that

L†n = L−n.

Thus Fµ is a positive energy unitary representation of Vir (positive
energy means that L0 is diagonalizable with spectrum bounded below).

More generally, we may consider the theory of ` massless scalars
φ1, ..., φ`. In this case D = F⊗` ⊗ F∗⊗`, and F⊗` is a positive energy
unitary Vir-module with central charge c = ` (the tensor product of `
copies of F).

Exercise 13.7. 1. Show that Vir is a non-trivial central extension of
W (i.e., not isomorphic to W ⊕ C as a Lie algebra).

2. Show that Vir is a universal central extension of W , i.e., every
non-trivial central extension of W by C is isomorphic to Vir.
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13.8. Normal ordering, composite operators and operator prod-
uct expansion in conformal field theory. Let us now summarize
the theory of normal ordering, composite operators and operator prod-
uct expansion from Subsection 11.11 in the case of conformal field the-
ory, for the running example of a quantum massless scalar boson. We
have seen that the operator product a(z)a(w) is well defined only if
w 6= z and has a pole when w = z, leading to the local operator a(z)2

not being well defined. So let us expand this operator product in a Lau-
rent series near w = z and identify the singular part involving negative
powers of w − z. For this purpose consider the difference

: a(z)a(w) := a(z)a(w)− 1

(z − w)2
.

The formula for the correlation functions for a(z) implies that

〈Ω, a(z1)...a(zi−1) : a(zi)a(zi+1) : a(zi+2)...a(zn)Ω 〉 =∑
σ∈Π2k:σ(i)6=i+1

1∏
j∈Π2k/σ

(zj − zσ(j))2
.

Note that this function is regular at zi = zi+1, hence the operator
: a(z)a(w) : is regular at z = w, i.e., defined for all z, w ∈ C×. This
operator is called the normally ordered product of a(z) and a(w). In
particular, although the square a(z)2 is not defined, we have a well
defined normally ordered square : a(z)2 :.

In terms of Laurent coefficients,

: a(z)a(w) :=
∑
m,n∈Z

: anam : z−n−1w−m−1,

where : anam := anam if m ≥ n and : anam := aman if m < n (normal
ordering of modes). Of course, this ordering only matters if m+n = 0.
In particular, we see that

1
2

: a(z)2 := T (z) :=
∑
n∈Z

Lnz
−n−2,

the generating function of the Virasoro modes Ln. This operator is
called the (quantum) energy-momentum tensor.

Thus we see that the Virasoro modes Ln may be viewed as Noether
charges for the corresponding infinitesimal conformal symmetries, in
the holomorphic sector of the theory. The corresponding Noether cur-
rents are zn+1T (z), as

Ln =
1

2πi

∮
zn+1T (z)dz.
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The Noether charges for the full theory are then Ln+Ln, with currents
zn+1T (z) + zn+1T (z). In particular, the Hamiltonian H, up to adding
a constant, is L0 + L0, which agrees with formula (11.5).

Similarly, we may define the normal ordered products of more than
two factors, : a(z1)....a(zn) :. This can be done by induction in n.
Namely, we have
(13.9)

: a(z0)a(z1)...a(zn) := a(z0) : a(z1)...a(zn) : −
∑
k∈[1,n]

:
∏

j 6=k a(zj) :

(z0 − zk)2

It is easy to see that the operator : a(z1)....a(zn) : has no singularities
and is well defined for all values z1, ..., zn ∈ C×. Thus for every r1, .., rn
we have the operator

: a(r1)(z1)...a(rn)(zn) := ∂r1z1 ...∂
rn
zn : a(z1)....a(zn) :

Setting z1 = ... = zn, we can then define the local operator : P (a)(z) :
for any differential polynomial P in a(z). This local operator, called a
composite operator, is a quantization of the corresponding local func-
tional P (a)(z) in classical field theory.

Exercise 13.8. (The state-operator correspondence) Show that the
map P 7→ P (a)(z)Ω|z=0 is well defined and gives an isomorphism be-
tween the space V of (polynomial) local operators and the Fock space
F .

More generally, repeatedly using (13.9), we have

: a(z1)...a(zn) : · : a(w1)...a(wm) :=
∑

I⊂[1,n],J⊂[1,m],s:I∼=J

:
∏
i/∈I a(zi)

∏
j /∈J a(wj) :∏

i∈I(zi − ws(i))2
.

So setting zi = z, wj = w, we obtain

: a(z)n :: a(w)m :=

min(m,n)∑
k=0

k!

(
n

k

)(
m

k

)
: a(z)n−ka(w)m−k :

(z − w)2k
.

E.g. for n = m = 1 we get the familiar identity

a(z)a(w) =
1

(z − w)2
+ : a(z)a(w) :=

1

(z − w)2
+ regular terms.

More generally, for n = 1 and any m we get

a(z) : a(w)m :=
m : am−1(w) :

(z − w)2
+ : a(z)a(w)m :

=
m : am−1(w) :

(z − w)2
+ regular terms.
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For m = 2 this can be written as

a(z)T (w) =
a(w)

(z − w)2
+ regular terms,

which encodes the commutation relations between ai and Lj.
For n = 2, m = 2 we get

: a(z)2 :: a(w)2 :=
2

(z − w)4
+

4 : a(z)a(w) :

(z − w)2
+ : a(z)2a(w)2 :=

2

(z − w)4
+

4 : a(w)2 :

(z − w)2
+

4 : a(w)a′(w)

z − w
+ regular terms.

This can also be written as

T (z)T (w) =
1

2(z − w)4
+

2T (w)

(z − w)2
+
T ′(w)

z − w
+ regular terms,

which encodes the commutation relations between Li. More generally,
at central charge c this relation would look like

T (z)T (w) =
c

2(z − w)4
+

2T (w)

(z − w)2
+
T ′(w)

z − w
+ regular terms.

These are the simplest examples of the operator product expansion.
In fact, we have the following theorem, whose proof we will leave to
the reader:

Theorem 13.9. For any local operators P,Q ∈ V, there exist a unique
finite sequence of local operators R1, ..., RN ∈ V such that

P (a)(z)Q(a)(w) =
N∑
j=1

Rj(a)(w)(z − w)−j + regular terms,

where (z − w)−j :=
∑

k≥0

(
k+j−1
j−1

)
z−j−kwk.

Note that the space locality property implies that Q(a)(w)P (a)(z) is
given by the same formula, but with (z−w)−j expanded in the opposite
direction, i.e., (z − w)−j := −

∑
k<0

(
k+j−1
j−1

)
z−j−kwk. Thus. we have

[P (a)(z), Q(a)(w)] =
N∑
j=1

1

(j − 1)!
Rj(a)(w)δ(j−1)(w − z).

Thus Theorem 13.9 gives us information about commutators between
the modes of P and Q. For example, as we have seen above,

[a(z), a(w)] = δ′(w − z),

and also
[a(z), T (w)] = a(w)δ′(w − z),
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[T (z), T (w)] =
c

12
δ′′′(w − z) + 2T (w)δ′(w − z) + T ′(w)δ(w − z),

where in our example c = 1.
Moreover, it is clear that one can uniquely continue the expansion

of Theorem 13.9 to also include terms of nonnegative degree; namely,
we simply need to expand the regular terms into a Taylor series with
respect to z − w for fixed w. For example, we have an asymptotic
expansion

a(z)a(w) ∼ 1

(z − w)2
+
∞∑
k=0

: a(k)(w)a(w) :
(z − w)k

k!

So in general we have

P (a)(z)Q(a)(w) ∼
N∑

j=−∞

Rj(a)(w)(z − w)−j.

This formula is called the operator product expansion of the product
of P and Q. The operator product expansion satisfies certain axioms,
which means that it defines on the space V ∼= F an algebraic structure
called a vertex algebra (which we will not discuss here, however).

13.9. Vertex operators. Vertex operators are obtained by quantizing
the local functional eiλϕ(z), where

ϕ(z) = −i
∫
a(z)dz = −i(a0 log z +

∑
n6=0

a−n
n
zn + a∨0 )

and a∨0 is a constant of integration (dual variable to a0). In other words,
we have

eiλϕ(z) = eλ
∫
a(z)dz = eλ(a0 log z+

∑
n6=0

a−n
n
zn)eλa

∨
0 .

A natural quantization of this functional is the operator

X(λ, z) :=: eλ(a0 log z+
∑
n6=0

a−n
n
zn) : eλa

∨
0 =

= eλ
∑
n>0

a−n
n
zne−λ

∑
n>0

an
n
z−nzλµeλ∂µ ,

which, due to the last factor, acts from Fµ to Fµ+λ by X0(λ, z)zλµ,
where

X0(λ, z) := eλ
∑
n>0

a−n
n
zne−λ

∑
n>0

an
n
z−n .

Here we work over the group algebra of C with basis zα, α ∈ C.
Now note that if [A,B] commutes with A,B then by the Campbell-

Hausdorff formula

eAeB = eBeAe[A,B],
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and that

[
∑
n>0

an
n
z−n,

∑
n>0

a−n
n
wn] =

∑
n>0

z−nwn

n
= − log(1− w

z
).

Thus

X0(λ, z)X0(ν, w) = (1− w
z
)λν : X0(λ, z)X0(ν, w) :

for |w| < |z|. So we get

X(λ, z)X(ν, w) = (z − w)λν : X(λ, z)X(ν, w) :

for |w| < |z|, where the normal ordering puts ∂µ to the right of µ. More
generally, we see that

X(λ1, z1)...X(λn, zn) =
∏

1≤j<k≤n

(zj − zk)λjλk : X(λ1, z1)...X(λn, zn) :

for |z1| > ... > |zn|. In particular, denoting the highest weight vector
of Fµ by Ωµ, we have

〈Ωµ+λ, X(λ1, z1)...X(λn, zn)Ωµ 〉 =
n∏
j=1

z
λjµ
j

∏
1≤j<k≤n

(zj − zk)λjλk .

for |z1| > ... > |zn|.
We see that this correlation function admits analytic continuation to

the complement of the diagonals zi 6= zj, but this continuation is not,
in general, single valued. In other words, the fields X(λ, z) in general
do not satisfy space locality. Instead, we have

(13.10) X(λ, z)X(ν, w) = eπiλνX(ν, w)X(λ, z),

which is understood in the sense of analytic continuation along a path
where v := w/z passes from the region |v| < 1 to the region |v| > 1
along positive reals, avoiding the point v = 1 from above. In particular,

X(λ, z)X(λ,w) = eπiλ
2

X(λ,w)X(λ, z),

i.e., X(λ, z) has “statistics λ2/2” (where statistics α ∈ R/Z means
that switching the order produces a phase factor e2πiα; e.g. statistics 0
corresponds to bosons and statistics 1/2 to fermions).

Note that if we apply commutation relation (13.10) twice, we obtain
a multiplier e2πiλν , which corresponds to the fact that the operator
product X(λ, z)X(ν, w) is multivalued in general.

This is an example of appearance of a braiding in conformal field the-
ory. Namely, relation (13.10) is called braided space-locality (or braided
commutativity), since it can be viewed as commutativity in a suitable
braided monoidal category.
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Note also that
X ′(λ, z) = λ : a(z)X(λ, z) :

where X ′ := ∂zX, and

[an, X(λ, z)] = λznX(λ, z).

Hence

[Ln, X(λ, z)] = zn+1X ′(λ, z) +
λ2

2
(n+ 1)znX(λ, z),

which implies that X(λ, z) has spin λ2/2. Thus we have the spin-
statistics property for X(λ, z), which generalizes the usual one: spin
modulo Z equals statistics.

As noted in Remark 11.2, such quantum fields are called “anyons”
(as they can have any spin and statistics) and can exist only in two
dimensions. The most general spin-statistics property for these anyons
says that if X, Y are anyons of spins sX , sY ≥ 0 then

X(z)Y (w) = e2πi
√
sXsY Y (w)X(z).

In particular, we see that if λ2 ∈ Z is odd then X(nλ, z) behave like
fermions for odd n and like bosons for even n with respect to each other
(i.e., the corresponding operators X(n1λ, z) and X(n2λ, z) commute if
n1n2 is even and anticommute if n1n2 is odd), while for even λ2 they
all behave like bosons (i.e., the operators commute).

13.10. The circle-valued theory. Now consider the theory of a mass-
less scalar on C× with values in the circle R/2πrZ. This theory is the
same as the line-valued one, except for the zero mode, which entails
the following circle-valued solutions of the string equation:

φ(t, x) = α + µt+Nrx,

where α ∈ R/2πrZ, µ ∈ R, and N is an integer (the winding number).
The space of such solutions is a disjoint union of cylinders T ∗S1 labeled
by values of N . So in quantum theory we get the Hilbert space

H◦r =
⊕
N,`∈Z

H◦r(N, `),

where H◦r(N, `) is the completion of F 1√
2

(`r−1+Nr)⊗F∗1√
2

(`r−1−Nr). Thus

we obtain the following formula for the partition function on the torus
Eτ :

Z◦r (τ) = |η(τ)|−2ϑr(τ, τ),

where
ϑr(τ, τ) :=

∑
`,N∈Z

e
1
2
πiτ(`r−1+Nr)2− 1

2
πiτ(`r−1−Nr)2

=
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∑
`,N∈Z

e−π(`2r−2+N2r2)Imτ+2πi`NReτ .

This shows an interesting duality Z◦r (τ) = Z◦r−1(τ); in fact, we see that
the whole theory with parameter r is equivalent to the one with pa-
rameter r−1. This duality is called T-duality, and it plays an important
role in string theory.

Also we note that ϑr is a real modular form of weight 1:

ϑr(− 1
τ
,− 1

τ
) = |τ |ϑr(τ, τ),

which leads to modular invariance of the function Zr(τ), as expected
in a conformal field theory. To see this, it is enough to note that in the
exponential we have a quadratic form on Z2 with matrix

Q(τ) =

(
r2Imτ −iReτ
−iReτ r−2Imτ

)
So

Q(τ)−1 = |τ |−2

(
r−2Imτ iReτ
iReτ r2Imτ

)
=

(
r−2Imτ ′ −iReτ ′

−iReτ ′ r2Imτ ′

)
= SQ(τ ′)S,

where τ ′ := − 1
τ

and S =

(
0 1
1 0

)
. Thus the result follows from the

Poisson summation formula.
We see that if r2 = p

q
∈ Q (in lowest terms), this conformal field

theory has a special property called rationality: the Hilbert space H◦r
is the completion of a finite sum of “sectors” ⊕ni=1Vi ⊗ V∗i , where the
left-moving fields act on Vi and right-moving ones in V∗i , so that ϑr(τ, τ)
and hence Z◦r (τ) are finite sums of products of a holomorphic and an
antiholomorphic function (in fact, it is easy to see that n = 2pq).
For example, the vacuum vector Ω is contained in the tensor product
V(pq)⊗V(pq)∗ where for s ∈ Z>0 we defined V(s) := ⊕m∈ZFm√2s. The
space V(s) is a vertex algebra called the lattice vertex algebra attached
to the even lattice

√
2sZ. This algebra is generated by the vertex

operators X(m
√

2s, z) (which, as we know, satisfy the bosonic version
of space locality).

Example 13.10. Consider the case r = 1. In this case we have two
sectors, the vacuum sector V(2) ⊗ V(2)∗ and another one, W ⊗W∗,
whereW = ⊕n∈2Z+1F n√

2
. The particles corresponding to F n√

2
for odd n

are anyons with statistics 1
4
, so they satisfy the braided commutativity

relation of the form X(z)Y (w) = iY (w)X(z).
It is not difficult to show that the Fourier modes of the vertex oper-

ators X(
√

2, z) and X(−
√

2, z) generate a projective action of the Lie
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algebra sl2[z, z−1] on V(2) = L0 and on W = L1, which are exactly the
irreducible integrable representations of the affine Kac-Moody algebra

ŝl2 = sl2[t, t−1] ⊕ CK (the universal central extension of sl2[t, t−1] at
level k = 1 (i.e., K acts by 1), namely X(

√
2, z), X(−

√
2, z),

√
2a(z)

give the currents e(z), f(z) and h(z), where for b ∈ sl2

b(z) :=
∑
n

(b⊗ tn)z−n−1.

This is the so called Frenkel-Kac vertex operator construction of level
1 irreducible integrable modules (defined for any finite dimensional
simply-laced simple Lie algebra) in the simplest special case g = sl2.
Thus the circle-valued theory of a free boson for r = 1 is the so-called
Wess-Zumino-Witten model in the simplest example of the Lie algebra
sl2 and level 1.

Example 13.11. Let r =
√

2. In this case we have four sectors:
Vj⊗V∗−j, j = 0, 1, 2, 3, where Vj = ⊕n∈4Z+jFn

2
. In particular, V0 = V(4)

and particles in V2 = F1 are fermions arising in the boson-fermion
correspondence.

13.11. Free massless fermions. In a similar way to free massless
bosons, one can describe the theory of a free massless fermion ξ(z).
As explained in Subsection 11.4, in two dimensions it makes sense to
consider chiral spinors taking values in the tautological representation
of Spin(2) = U(1) with kinetic term (ξ,Dξ). So we have a single
quantum field

ξ(z) =
∑

n∈Z+ 1
2

ξnz
−n− 1

2

and the conjugate quantum field ξ∗(z). The modes of ξ(z) satisfy the
relation

[ξ(z), ξ(w)]+ = δ(z − w),

where [, ]+ is the supercommutator. This yields the Clifford algebra
relations

ξnξm + ξmξn = δm,−n

for m,n ∈ Z. This algebra has a unique irreducible positive energy rep-
resentation Λ = ∧(ξ−1/2, ξ−3/2, ...) on which ξj acts by multiplications
for j < 0 and by differentiations for j > 0. There is an invariant posi-
tive Hermitian inner product on Λ in which the Clifford monomials in
ξj, j > 0 form an orthonormal basis (invariance means that ξ†j = ξ−j).
Thus the Hilbert space of the theory is the completion of D := Λ⊗Λ∗,
where Λ∗ is the dual of Λ corresponding to antiholomorphic fields.
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The hamiltonian H is supposed to satisfy commutation relations

[H, ξn] = −ξn, [H, ξ∗n] = ξ∗n,

So we have
H = HL +HR,

where
HL =

∑
n>0

nξ−nξn

and similarly for HR. The Virasoro algebra is defined by

Lm =
1

2

∑
n∈Z+ 1

2

n : ξnξ−n+m :,

i.e., HL = L0.

Exercise 13.12. Show that these operators Ln satisfy the Virasoro
commutation relations with central charge c = 1

2
.
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