
4. Plancherel formulas, Dirac sequences, smooth vectors

4.1. Plancherel formulas. For a compactly supported L1-function f
on G, for brevity let us denote π(fdg) just by π(f).

Proposition 4.1. (Plancherel’s theorem for compact groups) Let K be
a compact group and f1, f2 ∈ L2(K). Then

(f1, f2) =
∑
ρ∈IrrK

dim ρ · Tr(πρ(f1)πρ(f2)†)

and this series is absolutely convergent.

Proof. Recall that if ei is an orthonormal basis of a Hilbert space H
and f1, f2 ∈ H then

(f1, f2) =
∑
i

(f1, ei)(ei, f2)

and this series is absolutely convergent. The result now follows by
applying this formula to the orthonormal basis provided by the Peter-
Weyl theorem:

ψρij =
√

dim ρ(πρ(g)vρi, vρj),

where {vρi} is an orthonormal basis of ρ. �

Example 4.2. If K = S1, Plancherel’s theorem reduces to the usual
Parceval equality in Fourier analysis:

(f1, f2) =
∑
n∈Z

cn(f1)cn(f2),

where cn(f) are the Fourier coefficients of f .

Proposition 4.3. (Plancherel’s formula) If K is a compact Lie group
and f ∈ C∞(K) then

f(1) =
∑
ρ∈IrrK

dim ρ · Tr(πρ(f))

and this series is absolutely convergent.

Example 4.4. If K = S1 then this formula says that for f ∈ C∞(S1)

f(1) =
∑
n∈Z

cn(f),

i.e., the Fourier series of f absolutely converges at 1. Note that for
f ∈ C(S1) this is false in general!10

10One can show that for an N -dimensional group, the differentiability needed
for the Plancherel formula is Ck for k > N/2.
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Proof. Consider the integral operator A of convolution with the func-
tion f :

(Aψ)(x) = (f ∗ ψ)(x) =

∫
K

f(xy−1)ψ(y)dy.

This operator is trace class, since it has smooth integral kernel F (x, y) =
f(xy−1), and

Tr(A) =

∫
K

F (x, x)dx =

∫
K

f(1)dx = f(1).

On the other hand, A is right-invariant, so it preserves the decompo-
sition of L2(K) into the direct sum of ρ ⊗ ρ∗ and acts on each such
summand as πρ(f)⊗ 1. Thus we also have

Tr(A) =
∑
ρ∈IrrK

dim(ρ) · Tr(πρ(f)),

as desired. �

4.2. Dirac sequences. If G is a locally compact group then multi-
plication by dg defines an inclusion Cc(G) ↪→ Measc(G) of compactly
supported continuous functions into compactly supported measures as
a (non-unital) subalgebra. Moreover, if G is a Lie group then we have
a nested sequence of subalgebras Ck

c (G), 0 ≤ k ≤ ∞ (compactly sup-
ported Ck-functions). The following lemma shows that while these
subalgebras are non-unital, they are “almost unital”.

Lemma 4.5. There exists a sequence φn ∈ Cc(G) such that φn → δ1

in the weak topology as n→∞. Moreover, if G is a Lie group, we can
choose φn ∈ C∞c (G).

Proof. (sketch) φn can be constructed as a sequence of “hat” functions
supported on a decreasing sequence of balls B1 ⊃ B2 ⊃ ... whose
intersection is 1 ∈ G. Such hat functions can be chosen smooth if G is
a Lie group. �

Such sequences φn are called Dirac sequences.

Corollary 4.6. Cc(G) is sequentially dense in Measc(G). For Lie
groups, C∞c (G) is sequentially dense in Measc(G).

Proof. By translating a Dirac sequence, for any g ∈ G we can construct
a sequence ψn → δg. This implies that Meas0

c(G) is contained in the
sequential closure of Cc(G) (and of C∞c (G) in the Lie case). So the
result follows from Lemma 3.4. �
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4.3. Density of K-finite vectors.

Corollary 4.7. Let V be a continuous representation of a compact
group K. Then V fin is dense in V .

Proof. Let v ∈ V , and φn → δ1 a continuous Dirac sequence, which
exists by Lemma 4.5. Then π(φn)v → v as n → ∞. But φn ∈ L2(K),
so by the Peter-Weyl theorem, there exists ψn ∈ L2(K)fin = ⊕ρρ∗ ⊗ ρ
such that

‖ψn − φn‖2 <
1

n
.

Then ψn − φn → 0 in L2(K), hence in Measc(K). So by Corollary 3.8,
π(ψn − φn)v → 0 as n → ∞. It follows that π(ψn)v → v as n → ∞.
But π(ψn)v ∈ V fin. �

Corollary 4.8. L2(K)fin ⊂ C(K) is a dense subspace. Moreover, if K
is a Lie group then L2(K)fin ⊂ Ck(K) is a dense subspace for 0 ≤ k ≤
∞.

Proof. The claimed inclusions follow since matrix coefficients of finite
dimensional representations of K are continuous, and moreover C∞ in
the case of Lie groups. The density then follows from Corollary 4.7. �

Corollary 4.9. If V is an irreducible continuous representation of K
then V is finite dimensional.

Proof. By Corollary 4.7, V fin is dense in V . Hence V fin 6= 0. Let ρ
be a finite dimensional subrepresentation of V fin. Then ρ is a closed
invariant subspace of V . Hence ρ = V . �

4.4. Smooth vectors. Let G be a Lie group. As we have noted
in Subsection 1.2, any continuous finite dimensional representation
π : G → Aut(V ) is automatically smooth and thereby defines a rep-
resentation π∗ : g → End(V ) of the corresponding Lie algebra, which
determines π if G is connected. Moreover, if G is simply connected,
this correspondence is an equivalence of categories. This immediately
reduces the problem to pure algebra and is the main tool of studying
finite dimensional representations of Lie groups.

We would like to have a similar theory for infinite dimensional repre-
sentations. But in the infinite dimensional setting the above statements
don’t hold in the literal sense.

Example 4.10. Consider the action of S1 on L2(S1). Then the Lie
algebra should act by d

dθ
. But this operator does not act on L2(S1).

The largest subspace of L2(S1) preserved by this operator (acting on
distributions on S1) is C∞(S1).
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This motivates the notion of a smooth vector in a continuous rep-
resentation of a Lie group. To define this notion, for a manifold X and
a topological vector space V , denote by C∞(X, V ) the space of smooth
maps X → V (where smooth maps are defined in the same way as in
the case of finite dimensional V ).

Definition 4.11. Let (V, π) be a continuous representation of a Lie
group G. A vector v ∈ V is called smooth if the map G→ V given by
g 7→ π(g)v is smooth, i.e., belongs to C∞(G, V ). The space of smooth
vectors is denoted by V ∞.

It is clear that V ∞ ⊂ V is a G-invariant subspace (although not a
closed one).

Example 4.12. For the representation of a compact Lie group K on
V = L2(K), we have V ∞ = C∞(K).

Proposition 4.13. Let (V, π) be a continuous representation of a Lie
group G with g = Lie(G). Let v ∈ V ∞. Then we have a linear map
π∗,v : g→ V ∞ given by

π∗,v(b) =
d

dt
|t=0π(etb)v.

This defines a Lie algebra homomorphism π∗ : g→ EndC(V ∞) (algebra
of all linear endomorphisms of V ∞) given by π∗(b)v := π∗,v(b).

Exercise 4.14. Prove Proposition 4.13.

Proposition 4.15. (i) V ∞ is dense in V .
(ii) V fin ⊂ V ∞.

Proof. (i) Let φn → δ1 be a smooth Dirac sequence. Then π(φn)v → v
as n→∞. But it is easy to see that π(φn)v ∈ V ∞.

(ii) This follows since matrix coefficients of finite dimensional repre-
sentations are smooth. �
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