13. Kostant’s theorem

13.1. Kostant’s theorem for Sg. Let g be a semisimple complex Lie
algebra.

Theorem 13.1. (Kostant) Sg is a free (Sg)®-module. Moreover, for
every finite dimensional irreducible representation V' of g, the space
Homgy(V, Sg) is a free (Sg)® module of rank dim V'[0], the dimension of
the zero weight space of V.

The rest of the subsection is dedicated to the proof of this theorem.
Introduce a filtration on Sg by setting deg(g,) = 1 for all roots « and
degh = 2. Then gr(Sg) = Sn_ ® Sh ® Sn, and by the Chevalley
restriction theorem, gr(Sg)? is identified with the subalgebra (Sh)"
of the middle factor. Thus by the Chevalley-Shephard-Todd theorem,
gr(Sg) is a free gr(Sg)?-module. It follows that Sg is a free (Sg)-
module (namely, any lift of a homogeneous basis of the graded module
is a basis of the filtered module).

Now recall that

(11) Sg = Ovenr(gV & Homg(V, Sg).

Thus Homgy(V, Sg) is a graded direct summand in Sg. It follows that
Homg(V, Sg) is a projective, hence free (Sg)%-module (using Lemma
12.3(ii)).

It remains to prove the formula for the rank of Homy(V, Sg). To this
end, consider the )-graded Hilbert series of Sg, i.e., the generating
function of the characters of symmetric powers of g:

Ho(Sg,q) == > (D dim S™g[ule)q™ € C[Q)([q]]-

m>0 pe@

Since Sg = Sh ® Qe S¥a, We have

1 1
HQ(597Q> - (1 _q)rcg%l _q€a7

where r = rank(g). On the other hand, by (11),

HQ(SQ, Q) = Z H(Homg(V, Sg)a Q>XV7
Velrr(g)

where yy is the character of V.
Now, by the Chevalley restriction theorem (Sg)? = (Sh)", so

H(Homy(V, Sg),q) = H(Hogélg(V, (Sg)o), 0) H((SH)", q).



Thus by the Chevalley-Shephard-Todd theorem,

T

1
H(Homq(V, Sa).q) = H(Homy(V. (Sa)o), ) [ =5
i=1
So we get
" d;
Z H(Homgy(V, (S9)0), ¢)xv = . Hz(11 [_]qea).
Velrr(g) a€ER q

By character orthogonality, H(Homgy(V, (Sg)o), ¢) is the inner product
of the right hand side of this equality with yy:

AoV, (580).0) = (it s ).

Recall that the inner product on C[P] making the characters orthonor-
mal is given by the formula

1 * [0
(6,0) = WCT(W QEHRO —e%)),

where where C'T denotes the constant term and * is the automorphism
of C[P] given by (e*)* = e *. Thus, using that x{ = xv+, we get

12) AHon(v, (sa)0).0) = Loithor (xv* 5= q> '

acR

In this formula ¢ is a formal parameter, but the right hand side con-
verges to an analytic function in the disk |¢| < 1, since it can be written
as an integral:

H(tomy (V. (S9).0) = Lkt [ e ]

1— eia(x)

1 — qeia(a}) dl‘,
where @V is the coroot lattice. If 0 < ¢ < 1, this can also be written
as
(13)

2
1 — eia(z)

H(Homg(V; (Sg)o), 4) = M/MQV e | T 2 ] g

W] b T 0

Lemma 13.2. Asq — 1in (0, 1), the function Fy(z) := [ ,cr, f_‘;e—f;(zc))
goes to 1 in L2(h/QY).*
Note however that F,(z) does not go to 1 pointwise (hence not in C(h/Q"))

since F,(0) = 0.
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Proof. If x € R, |z| < 1 then mingejo (1 — 2qz 4+ ¢*) is 1 if < 0 and
1—2%if 2z > 0. Soif 2 = x + 4y is on the unit circle and 0 < ¢ < 1
then

1—2z
1—gqz

T 1-2r+ @ o x>0

2 21-2) <{2(1—x), <0 _,

Note also that by the residue formula

/1 dt 1 / 2 ldz 1
o [L—qe? 2 2mi [,y (1—q2)(1—qz71)  1—¢*

Thus
1 1
| = |
0 0

So ll_;qzz — las g — 1in L?(S'). But if X is a finite measure space
and for j =1,..., N, f = f0 in L*(X) as n — oo and | (z)] < C
for all n,j,2 € X then []; f,(f) — II; f; in L3(X). This implies the

statement. ]

1 — 2mit 2

e (q_ 1)627rit 2

l—gq
1_q627rit t=

-1 = .
1+4¢

1— q627rit

By Lemma 13.2 we may take the limit ¢ — 1 under the integral in
(13). Then, using that []/_, d; = [W], we get

dim Homy(V, (Sg)o) = / v (67)dz =
h/QY
CT(xv-) = dim V*[0] = dim V[0],

which concludes the proof of Kostant’s theorem.

13.2. The structure of Sg as a (Sg)?-module. As a by-product, we
obtain

Theorem 13.3. (Kostant) For A € P, we have

H(Homy (L3, (o)), q) = Li=ztlHe (H Lo xh> -

|W| aGRl _qea

T e)\ HaeR+<1 _ ea)
[, -cT — .
Indeed, the first expression is (12) and second expression is obtained
from (12) using the Weyl character formula for xz, and observing that
all terms in the resulting sum over W are the same.
Substituting A = 0, we get
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Corollary 13.4.

1 1 —e® IIaGR (1 __ea) 1
_CT - _ == CT + —= = .
W] (alg% 1- q€a> (HaeR(l — qe”) [Tii[dilq

For example, if g = sly, this formula looks like
(14)

1 1— — 7z —

—CT(( 2)(1 z)):CT( 11—z ): 17

2 (1—gz)(1 —qz7") 1—-gz)(1—qz7")) 1+44q
which is easy to check using the residue formula.

For g = sl,, we obtain the identity

1 (1—%)(1—%)> < - % )
1
(1+¢q)..(1+g+..+qg 1)

13.3. The structure of U(g) as a Z(g)-module. Recall that the
universal enveloping algebra U(g) of any Lie algebra g has the standard
filtration defined on generators by deg(g) = 1, which is called the
Poincaré-Birkhoff-Witt filtration.

Let g be a semisimple complex Lie algebra of rank r, and W be the
Weyl group of g with degrees d;,2 =1,...,r.

Theorem 13.5. (Kostant) (i) The center Z(g) = U(g)® of U(g) is a
polynomial algebra in r generators C; of Poincaré-Birkhoff- Witt filtra-
tion degrees d;.

(11) U(g) is a free module over Z(g), and for every irreducible finite

dimensional representation V' of g, the space Homy(V,U(g)) is a free
Z(g)-module of rank dim V[0].

Proof. By the Poincaré-Birkhoff-Witt theorem, for any Lie algebra g
we have gr(U(g)) = Sg. Moreover, we have the symmetrization map
Sg — U(g) given by

a Q... R a, — % Z As(1)---As(n)s
sESR
a; € g, which is an isomorphism of g-modules. Using this map, any
homogeneous element of (Sg)? can be lifted into U(g)?. It follows that
gr(U(g)®) = (Sg)9. Thus Theorem 13.1 implies all the statements of
the theorem. 0

Example 13.6. Suppose g is simple. Then d; = 2 and C) is the

quadratic Casimir of g.
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Exercise 13.7. Consider the Lie algebra g = sl,,(C) spanned by ele-
mentary matrices E;; with Y | E; = 0.
(i) Show that the center Z(g) is freely generated by the elements

k
Ck—l = HEij,ij+17 k= 27 ey N
i1 j=

where j is viewed as an element of Z/k.

Hint: It is slightly more convenient (and equivalent) to consider
g = g[,,(C), in which case one also has the generator Cy. Identify g
with g* using the trace pairing on g. Let T}, : g®* — C be the g-module
map defined by Ty(a; ® ... ® ag) = Tr(ag...a1). Let T; : C — g®* be
the dual map. Show that

T (1) = Z Eiriy @ Bigiy ® ... @ By,
i1 yeensip=1
Use that this element is g-invariant to show that the element Cj_; is
central.
(ii) Generalize these statements to s09,.1(C) and sp,,,(C). What
happens for so,,,7
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