
9 Differentiating ODE solutions

In this lecture, we will consider the problem of differentiating the solution of ordinary differential equations (ODEs)
with respect to parameters that appear in the equations and/or initial conditions. This is as important topic in a
surprising number of practical applications, such as evaluating the effect of uncertainties, fitting experimental data,
or machine learning (which is increasingly combining ODE models with neural networks). As in previous lectures,
we will find that there are crucial practical distinctions between “forward” and “reverse” (“adjoint”) techniques for
computing these derivatives, depending upon the number of parameters and desired outputs.

Although a basic familiarity with the concept of an ODE will be helpful to readers of this lecture, we will begin
with a short review in order to establish our notation and terminology.

The video lecture on this topic for IAP 2023 was given by Dr. Frank Schäfer (MIT). These notes follow the
same basic approach, but differ in some minor notational details.

9.1 Ordinary differential equations (ODEs)
An ordinary differential equation (ODE) is an equation for a function u(t) of “time”8 t ∈ R in terms of one or
more derivatives, most commonly in the first-order form

du

dt
= f(u, t)

for some right-hand-side function f . Note that u(t) need not be a scalar function—it could be a column vector
u ∈ Rn, a matrix, or any other differentiable object. One could also write ODEs in terms of higher derivatives
d2u/dt2 and so on, but it turns out that one can write any ODE in terms of first derivatives alone, simply by
making u a vector with more components.9 To uniquely determine a solution of a first-order ODE, we need some
additional information, typically an initial value u(0) = u0 (the value of u at t = 0), in which case it is called
an initial-value problem. These facts, and many other properties of ODEs, are reviewed in detail by many
textbooks on differential equations, as well as in classes like 18.03 at MIT.

ODEs are important for a huge variety of applications, because the behavior of many realistic systems is defined
in terms of rates of change (derivatives). For example, you may recall Newton’s laws of mechanics, in which
acceleration (the derivative of velocity) is related to force (which may be a function of time, position, and/or
velocity), and the solution u = [position, velocity] of the corresponding ODE tells us the trajectory of the system.
In chemistry, u might represent the concentrations of one or more reactant molecules, with the right-hand side
f providing reaction rates. In finance, there are ODE-like models of stock or option prices. Partial differential
equations (PDEs) are more complicated versions of the same idea, for example in which u(x, t) is a function of
space x as well as time t and one has ∂u

∂t = f(u, x, t) in which f may involve some spatial derivatives of u.
In linear algebra (e.g. 18.06 at MIT), we often consider initial-value problems for linear ODEs of the form

du/dt = Au where u is a column vector and A is a square matrix; if A is a constant matrix (independent of t or u),
then the solution u(t) = eAtu(0) can be described in terms of a matrix exponential eAt. More generally, there are
many tricks to find explicit solutions of various sorts of ODEs (various functions f). However, just as one cannot
find explicit formulas for the integrals of most functions, there is no explicit formula for the solution of most ODEs,

8Of course, the independent variable need not be time, it just needs to be a real scalar. But in a generic context it is convenient to
imagine ODE solutions as evolving in time.

9For example, the second-order ODE d2v
dt2

+ dv
dt

= h(v, t) could be re-written in first-order form by defining u =

(
u1

u2

)
=(

v
dv/dt

)
, in which case du/dt = f(u, t) where f =

(
u2

h(u1, t)− u2

)
.
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and in many practical applications one must resort to approximate numerical solutions. Fortunately, if you supply
a computer program that can compute f(u, t), there are mature and sophisticated software libraries10 which can
compute u(t) from u(0) for any desired set of times t, to any desired level of accuracy (for example, to 8 significant
digits).

For example, the most basic numerical ODE method computes the solution at a sequence of times tn = n∆t for
n = 0, 1, 2, . . . simply by approximating du

dt = f(u, t) using the finite difference u(tn+1)−u(tn)
∆t ≈ f(u(tn), tn), giving

us the “explicit” timestep algorithm:

u(tn+1) ≈ u(tn) + ∆t f(u(tn), tn).

Using this technique, known as “Euler’s method,” we can march the solution forward in time: starting from our
initial condition u0, we compute u(t1) = u(∆t), then u(t2) = u(2∆t) from u(∆t), and so forth. Of course, this
might be rather inaccurate unless we make ∆t very small, necessitating many timesteps to reach a given time t, and
there can arise other subtleties like “instabilities” where the error may accumulate exponentially rapidly with each
timestep. It turns out that Euler’s method is mostly obsolete: there are much more sophisticated algorithms that
robustly produce accurate solutions with far less computational cost. However, they all resemble Euler’s method
in the conceptual sense: they use evaluations of f and u at a few nearby times t to “extrapolate” u at a subsequent
time somehow, and thus march the solution forwards through time.

Relying on a computer to obtain numerical solutions to ODEs is practically essential, but it can also make
ODEs a lot more fun to work with. If you ever took a class on ODEs, you may remember a lot of tedious labor
(tricky integrals, polynomial roots, systems of equations, integrating factors, etc.) to obtain solutions by hand.
Instead, we can focus here on simply setting up the correct ODEs and integrals and trust the computer to do the
rest.

9.2 Sensitivity analysis of ODE solutions

Often, ODEs depend on some additional parameters p ∈ RN (or some other vector space). For example, these
might be reaction-rate coefficients in a chemistry problem, the masses of particles in a mechanics problem, the
entries of the matrix A in a linear ODE, and so on. So, you really have a problem of the form

∂u

∂t
= f(u, p, t),

where the solution u(p, t) depends both on time t and the parameters p, and in which the initial condition u(p, 0) =

u0(p) may also depend on the parameters.
The question is, how can we compute the derivative ∂u/∂p of the solution with respect to the parameters of

the ODE? By this, as usual, we mean the linear operator that gives the first-order change in u for a change in p,
as depicted in Fig. 11:

u(p+ dp, t)− u(p, t) =
∂u

∂p
[dp] (an n-component infinitesimal vector),

where of course ∂u/∂p (which can be thought of as an n×N Jacobian matrix) depends on p and t. This kind of
question is commonplace. For example, it is important in:

• Uncertainty quantification (UQ): if you have some uncertainty in the parameters of your ODE (for example,
you have a chemical reaction in which the reaction rates are only known experimentally ± some measurement
errors), the derivative ∂u/∂p tells you (to first order, at least) how sensitive your answer is to each of these

10For a modern and full-featured example, see the DifferentialEquations.jl suite of ODE solvers in the Julia language.
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Figure 11: If we have an ordinary differential equation (ODE) ∂u
∂t = f(u, p, t) whose solution u(p, t) depends on

parameters p, we would like to know the change du = u(p + dp, t) − u(p, t) in the solution due to changes in p.
Here, we show a simple example ∂u

∂t = −pu, whose solution u(p, t) = e−ptu(p, 0) is known analytically, and show
the change δu from changing p = 1 to by δp = 0.1.

uncertainties.

• Optimization and fitting: often, you want to choose the parameters p to maximize or minimize some objective
(or “loss” in machine learning). For example, if your ODE models some chemical reaction with unknown
reaction rates or other parameters p, you might want to fit the parameters p to minimize the difference
between u(p, t) and some experimentally observed concentrations.

In the latter case of optimization, you have a scalar objective function of the solution, since to minimize or
maximize something you need a real number (and u might be a vector). For example, this could take on one of the
following two forms:

1. A real-valued function g(u(p, T ), T ) ∈ R that depends on the solution u(p, T ) at a particular time T . For
example, if you have an experimental solution u∗(t) that you are are trying to match at t = T , you might
minimize g(u(p, T ), T ) = ∥u(p, T )− u∗(T )∥2.

2. A real-valued function G(p) =
∫ T

0
g(u(p, t), t)dt that depends on an average (here scaled by T ) over many

times t ∈ (0, T ) of our time-dependent g. In the example of fitting experimental data u∗(t), minimizing
G(p) =

∫ T

0
∥u(p, t)− u∗(t)∥2dt corresponds to a least-square fit to minimize the error averaged over a time T

(e.g. the duration of your experiment).

More generally, you can give more weight to certain times than others by including a non-negative weight
function w(t) in the integral:

Gw(p) =

∫ ∞

0

∥u(p, t)− u∗(t)∥2 w(t) dt, .

The two cases above are simply the choices w(t) = δ(t − T ) (a Dirac delta function) and w(t) =

1 t ≤ T

0 otherwise
(a step function), respectively. As discussed in Problem 43, you can let w(t) be a sum of delta functions to represent
data at a sequence of discrete times.
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In both cases, since these are scalar-valued functions, for optimization/fitting one would like to know the gradient
∇pg or ∇pG, such that, as usual,

g(u(p+ dp, t), t)− g(u(p, t), t) = (∇pg)
T
dp

so that ±∇pg is the steepest ascent/descent direction for maximization/minimization of g, respectively. It is worth
emphasizing gradients (which we only define for scalar-valued functions) have the same shape as their inputs p, so
∇pg is a vector of length N (the number of parameters) that depends on p and t.

These are “just derivatives,” but probably you can see the difficulty: if we don’t have a formula (explicit solution)
for u(p, t), only some numerical software that can crank out numbers for u(p, t) given any parameters p and t, how
do we apply differentiation rules to find ∂u/∂p or ∇pg? Of course, we could use finite differences as in Sec. 4—just
crank through numerical solutions for p and p + δp and subtract them—but that will be quite slow if we want
to differentiate with respect to many parameters (N ≫ 1), not to mention giving potentially poor accuracy. In
fact, people often have huge numbers of parameters inside an ODE that they want to differentiate. Nowadays, our
right-hand-side function f(u, p, t) can even contain a neural network (this is called a “neural ODE”) with thousands
or millions (N) of parameters p, and we need all N of these derivatives ∇pg or ∇pG to minimize the “loss” function
g or G. So, not only do we need to find a way to differentiate our ODE solutions (or scalar functions thereof), but
these derivatives must be obtained efficiently. It turns out that there are two ways to do this, and both of them
hinge on the fact that the derivative is obtained by solving another ODE :

• Forward mode: ∂u
∂p turns out to solve another ODE that we can integrate with the same numerical solvers

for u. This gives us all of the derivatives we could want, but the drawback is that the ODE for ∂u
∂p is larger

by a factor of N than the original ODE for u, so it is only practical for small N (few parameters).

• Reverse (“adjoint”) mode: for scalar objectives, it turns out that ∇pg or ∇pG can be computed by solving
a different ODE for an “adjoint” solution v(p, t) of the same size as u, and then computing some simple
integrals involving u (the “forward” solution) and v. This has the advantage of giving us all N derivatives
with only about twice the cost of solving for u, regardless of the number N of parameters. The disadvantage
is that, since it turns out that v must be integrated “backwards” in time (starting from an “initial” condition
at t = T and working back to t = 0) and depends on u, it is necessary to store u(p, t) for all t ∈ [0, T ] (rather
than marching u forwards in time and discarding values from previous times when they are no longer needed),
which can require a vast amount of computer memory for large ODE systems integrated over long times.

We will now consider each of these approaches in more detail.

9.2.1 Forward sensitivity analysis of ODEs

Let us start with our ODE ∂u
∂t = f(u, p, t), and consider what happens to u for a small change dp in p:

d

(
∂u

∂t

)
︸ ︷︷ ︸
=f(u,p,t)

=
∂

∂t
(du) =

∂

∂t

(
∂u

∂p
[dp]

)
=

∂

∂t

(
∂u

∂p

)
[dp]

= d(f(u, p, t)) =

(
∂f

∂u

∂u

∂p
+

∂f

∂p

)
[dp],

where we have used the familiar rule (from multivariable calculus) of interchanging the order of partial derivatives—
a property that we will re-derive explicitly for our generalized linear-operator derivatives in our lecture on Hessians

68



and second derivatives. Equating the right-hand sides of the two lines, we see that we have an ODE

∂

∂t

(
∂u

∂p

)
=

∂f

∂u

∂u

∂p
+

∂f

∂p

for the derivative ∂u
∂p , whose initial condition is obtained simply by differentiating the initial condition u(p, 0) = u0(p)

for u:
∂u

∂p

∣∣∣∣
t=0

=
∂u0

∂p
.

We can therefore plug this into any ODE solver technique (usually numerical methods, unless we are extremely
lucky and can solve this ODE analytically for a particular f) to find ∂u

∂p at any desired time t. Simple, right?
The only thing that might seem a little weird here is the shape of the solution: ∂u

∂p is a linear operator, but
how can the solution of an ODE be a linear operator? It turns out that there is nothing wrong with this, but it is
helpful to think about a few examples:

• If u, p ∈ R are scalars (that is, we have a single scalar ODE with a single scalar parameter), then ∂u
∂p is just

a (time-dependent) number, and our ODE for ∂u
∂p is an ordinary scalar ODE with an ordinary scalar initial

condition.

• If u ∈ Rn (a “system” of n ODEs) and p ∈ R is a scalar, then ∂u
∂p ∈ Rn is another column vector and our ODE

for ∂u
∂p is another system of n ODEs. So, we solve two ODEs of the same size n to obtain u and ∂u

∂p .

• If u ∈ Rn (a “system” of n ODEs) and p ∈ RN is a vector of N parameters, then ∂u
∂p ∈ Rn×N is an n × N

Jacobian matrix. Our ODE for ∂u
∂p is effectivly system of nN ODEs for all the components of this matrix,

with a matrix ∂u0

∂p of nN initial conditions! Solving this “matrix ODE” with numerical methods poses no
conceptual difficulty, but will generally require about N times the computational work of solving for u, simply
because there are N times as many unknowns. This could be expensive if N is large!

This reflects our general observation of forward-mode differentiation: it is expensive when the number N of “input”
parameters being differentiated is large. However, forward mode is straightforward and, especially for N ≲ 100 or
so, is often the first method to try when differentiating ODE solutions. Given ∂u

∂p , one can then straightforwardly
differentiate scalar objectives by the chain rule:

∇pg|t=T =
∂u

∂p

T

︸︷︷︸
JacobianT

∂g

∂u

T

︸︷︷︸
vector

∣∣∣∣∣∣∣∣
t=T

,

∇pG =

∫ T

0

∇pg dt.

The left-hand side ∇pG is gradient of a scalar function of N parameters, and hence the gradient is a vector of N
components. Correspondingly, the right-hand side is an integral of an N -component gradient ∇pg as well, and the
integral of a vector-valued function can be viewed as simply the elementwise integral (the vector of integrals of each
component).

9.2.2 Reverse/adjoint sensitivity analysis of ODEs

For large N ≫ 1 and scalar objectives g or G (etc.), we can in principle compute derivatives much more efficiently,
with about the same cost as computing u, by applying a “reverse-mode” or “adjoint” approach. In other lectures,
we’ve obtained analogous reverse-mode methods simply by evaluating the chain rule left-to-right (outputs-to-inputs)
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instead of right-to-left. Conceptually, the process for ODEs is similar,11 but algebraically the derivation is rather
trickier and less direct. The key thing is that, if possible, we want to avoid computing ∂u

∂p explicitly, since this
could be a prohibitively large Jacobian matrix if we have many parameters (p is large), especially if we have many
equations (u is large).

In particular, let’s start with our forward-mode sensitivity analysis, and consider the derivative G′ = (∇pG)T

where G is the integral of a time-varying objective g(u, p, t) (which we allow to depend explicitly on p for generality).
By the chain rule,

G′ =

∫ T

0

(
∂g

∂p
+

∂g

∂u

∂u

∂p

)
dt,

which involves our unwanted factor ∂u
∂p . To get rid of this, we’re going to use a “weird trick” (much like Lagrange

multipliers) of adding zero to this equation:

G′ =

∫ T

0

(∂g

∂p
+

∂g

∂u

∂u

∂p

)
+ vT

(
∂

∂t

(
∂u

∂p

)
− ∂f

∂u

∂u

∂p
− ∂f

∂p

)
︸ ︷︷ ︸

=0

 dt

for some function v(t) of the same shape as u that multiplies our “forward-mode” equation for ∂u/∂p. (If u ∈ Rn

then v ∈ Rn; more generally, for other vector spaces, read vT as an inner product with v.) The new term vT (· · · )
is zero because the parenthesized expression is precisely the ODE satisfied by ∂u

∂p , as obtained in our forward-mode
analysis above, regardless of v(t). This is important because it allows us the freedom to choose v(t) to cancel the
unwanted ∂u

∂p term. In particular, if we first integrate by parts on the vT ∂
∂t

(
∂u
∂p

)
term to change it to −

(
∂v
∂t

)T ∂u
∂p

plus a boundary term, then re-group the terms, we find:

G′ = vT
∂u

∂p

∣∣∣∣T
0

+

∫ T

0

∂g∂p − vT
∂f

∂p
+

(
∂g

∂u
− vT

∂f

∂u
−
(
∂v

∂t

)T
)

︸ ︷︷ ︸
want to be zero!

∂u

∂p

 dt .

If we could now set the (· · · ) term to zero, then the unwanted ∂u
∂p would vanish from the integral calculation in G′.

We can accomplish this by choosing v(t) (which could be anything up to now) to satisfy the “adjoint” ODE:

∂v

∂t
=

(
∂g

∂u

)T

−
(
∂f

∂u

)T

v .

What initial condition should we choose for v(t)? Well, we can use this choice to get rid of the boundary term we
obtained above from integration by parts:

vT
∂u

∂p

∣∣∣∣T
0

= v(T )T
∂u

∂p

∣∣∣∣
T︸ ︷︷ ︸

unknown

−v(0)T ∂u0

∂p︸︷︷︸
known

.

Here, the unknown ∂u
∂p

∣∣∣
T

term is a problem—to compute that, we would be forced to go back to integrating our big
∂u
∂p ODE from forward mode. The other term is okay: since the initial condition u0 is always given, we should know
its dependence on p explicitly (and we will simply have ∂u0

∂p = 0 in the common case where the initial conditions

11This “left-to-right” picture can be made very explicit if we imagine discretizing the ODE into a recurrence, e.g. via Euler’s method
for an arbitrarily small ∆t, as described in the MIT course notes Adjoint methods and sensitivity analysis for recurrence relations by
S. G. Johnson (2011).
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don’t depend on p). To eliminate the ∂u
∂p

∣∣∣
T

term, therefore, we make the choice

v(T ) = 0 .

Instead of an initial condition, our adjoint ODE has a final condition. That’s no problem for a numerical solver:
it just means that the adjoint ODE is integrated backwards in time, starting from t = T and working down
to t = 0. Once we have solved the adjoint ODE for v(t), we can plug it into our equation for G′ to obtain our
gradient by a simple integral:

∇pG = (G′)
T
= −

(
∂u0

∂p

)T

v(0) +

∫ T

0

[(
∂g

∂p

)T

−
(
∂f

∂p

)T

v

]
dt .

(If you want to be fancy, you can compute this
∫ T

0
simultaneously with v itself, by augmenting the adjoint ODE with

an additional set of unknowns and equations representing the G′ integrand. But that’s mainly just a computational
convenience and doesn’t change anything fundamental about the process.)

The only remaining annoyance is that the adjoint ODE depends on u(p, t) for all t ∈ [0, T ]. Normally, if we are
solving the “forward” ODE for u(p, t) numerically, we can “march” the solution u forwards in time and only store the
solution at a few of the most recent timesteps. Since the adjoint ODE starts at t = T , however, we can only start
integrating v after we have completed the calculation of u. This requires us to save essentially all of our previously
computed u(p, t) values, so that we can evaluate u at arbitrary times t ∈ [0, T ] during the integration of v (and
G′). This can require a lot of computer memory if u is large (e.g. it could represent millions of grid points from a
spatially discretized PDE, such as in a heat-diffusion problem) and many timesteps t were required. To ameliorate
this challenge, a variety of strategies have been employed, typically centered around “checkpointing” techniques in
which u is only saved at a subset of times t, and its value at other times is obtained during the v integration by
re-computing u as needed (numerically integrating the ODE starting at the closest “checkpoint” time). A detailed
discussion of such techniques lies outside the scope of these notes, however.

9.3 Example
Let us illustrate the above techniques with a simple example. Suppose that we are integrating the scalar ODE

∂u

∂t
= f(u, p, t) = p1 + p2u+ p3u

2 = pT

 1

u

u2


for an initial condition u(p, 0) = u0 = 0 and three parameters p ∈ R3. (This is probably simple enough to solve in
closed form, but we won’t bother with that here.) We will also consider the scalar function

G(p) =

∫ T

0

[u(p, t)− u∗(t)]
2︸ ︷︷ ︸

g(u,p,t)

dt

that (for example) we may want to minimize for some given u∗(t) (e.g. experimental data or some given formula
like u∗ = t3), so we are hoping to compute ∇pG.
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9.3.1 Forward mode

The Jacobian matrix ∂u
∂p =

(
∂u
∂p1

∂u
∂p2

∂u
∂p3

)
is simply a row vector, and satisfies our “forward-mode” ODE:

∂

∂t

(
∂u

∂p

)
=

∂f

∂u

∂u

∂p
+

∂f

∂p
= (p2 + 2p3u)

∂u

∂p
+
(

1 u u2
)

for the initial condition ∂u
∂p

∣∣∣
t=0

= ∂u0

∂p = 0. This is an inhomogeneous system of three coupled linear ODEs, which
might look more conventional if we simply transpose both sides:

∂

∂t


∂u
∂p1

∂u
∂p2

∂u
∂p3


︸ ︷︷ ︸
(∂u/∂p)T

= (p2 + 2p3u)


∂u
∂p1

∂u
∂p2

∂u
∂p3

+

 1

u

u2

 .

The fact that this depends on our “forward” solution u(p, t) makes it not so easy to solve by hand, but a computer
can solve it numerically with no difficulty. We can then plug this into the chain rule for G:

∇pG = 2

∫ T

0

[u(p, t)− u∗(t)]
∂u

∂p

T

dt

(again, an integral that a computer could evaluate numerically).

9.3.2 Reverse mode

In reverse mode, we have an adjoint solution v(t) ∈ R (the same shape as u) which solves our adjoint equation

∂v

dt
=

(
∂g

∂u

)T

−
(
∂f

∂u

)T

v = 2 [u(p, t)− u∗(t)]− (p2 + 2p3u) v

with a final condition v(T ) = 0. Again, a computer can solve this numerically without difficulty (given the numerical
“forward” solution u) to find v(t) for t ∈ [0, T ]. Finally, our gradient is the integrated product:

∇pG = −
∫ T

0

 1

u

u2

 v dt .

Another useful exercise is to consider a G that takes the form of a summation:
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Problem 43
Suppose that G(p) takes the form of a sum of K terms:

G(p) =
K∑

k=1

gk(p, u(p, tk))

for times tk ∈ (0, T ) and functions gk(p, u). For example, this could arise in least-square fitting of experimental
data u∗(tk) at K discrete times, with gk(u(p, tk)) = ∥u∗(tk) − u(p, tk)∥2 measuring the squared difference
between u(p, tk) and the measured data at time tk.

1. Show that such a G(p) can be expressed as a special case of our formulation in this chapter, by defining
our function g(u, t) using a sum of Dirac delta functions δ(t− tk).

2. Explain how this affects the adjoint solution v(t): in particular, how the introduction of delta-function
terms on the right-hand side of dv/dt causes v(t) to have a sequence of discontinuous jumps. (In several
popular numerical ODE solvers, such discontinuities can be incorporated via discrete-time “callbacks”.)

3. Explain how these delta functions may also introduce a summation into the computation of ∇pG, but
only if gk depends explicitly on p (not just via u).

9.4 Further reading
A classic reference on reverse/adjoint differentiation of ODEs (and generalizations thereof), using notation sim-
ilar to that used today (except that the adjoint solution v is denoted λ(t), in an homage to Lagrange mul-
tipliers), is Cao et al. (2003) (https://doi.org/10.1137/S1064827501380630), and a more recent review article
is Sapienza et al. (2024) (https://arxiv.org/abs/2406.09699). See also the SciMLSensitivity.jl package (https:
//github.com/SciML/SciMLSensitivity.jl) for sensitivity analysis with Chris Rackauckas’s amazing DifferentialE-
quations.jl software suite for numerical solution of ODEs in Julia. There is a nice 2021 YouTube lecture on adjoint
sensitivity of ODEs (https://youtu.be/k6s2G5MZv-I), again using a similar notation. A discrete version of this
process arises for recurrence relations, in which case one obtains a reverse-order “adjoint” recurrence relation as
described in MIT course notes by S. G. Johnson (https://math.mit.edu/~stevenj/18.336/recurrence2.pdf).

The differentiation methods in this chapter (e.g. for ∂u/∂p or ∇pG) are derived assuming that the ODEs are
solved exactly: given the exact ODE for u, we derived an exact ODE for the derivative. On a computer, you will
solve these forward and adjoint ODEs approximately, and in consequence the resulting derivatives will only be
approximately correct (to the tolerance specified by your ODE solver). This is known as a differentiate-then-
discretize approach, which has the advantage of simplicity (it is independent of the numerical solution scheme)
at the expense of slight inaccuracy (your approximate derivative will not exactly predict the first-order change
in your approximate solution u). The alternative is a discretize-then-differentiate approach, in which you
first approximate (“discretize”) your ODE into a discrete-time recurrence formula, and then exactly differentiate
the recurrence. This has the advantage of exactly differentiating your approximate solution, at the expense of
complexity (the derivation is specific to your discretization scheme). Various authors discuss these tradeoffs and
their implications, e.g. in chapter 4 of M. D. Gunzburger’s Perspectives in Flow Control and Optimization (2002)
or in papers like Jensen et al. (2014).
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