
12 Second Derivatives, Bilinear Maps,

and Hessian Matrices
In this chapter, we apply the principles of this course to second derivatives, which are conceptually just derivatives
of derivatives but turn out to have many interesting ramifications. We begin with a (probably) familiar case of
scalar-valued functions from multi-variable calculus, in which the second derivative is simply a matrix called the
Hessian. Subsequently, however, we will show that similar principles can be applied to more complicated input and
output spaces, generalizing to a notion of f ′′ as a symmetric bilinear map.

12.1 Hessian matrices of scalar-valued functions
Recall that for a function f(x) ∈ R that maps column vectors x ∈ Rn to scalars (f : Rn 7→ R), the first derivative
f ′ can be expressed in terms of the familiar gradient ∇f = (f ′)T of multivariable calculus:

∇f =


∂f
∂x1
∂f
∂x2

...
∂f
∂xn

 .

If we think of ∇f as a new (generally nonlinear) function mapping x ∈ Rn 7→ ∇f ∈ Rn, then its derivative is an
n×n Jacobian matrix (a linear operator mapping vectors to vectors), which we can write down explicitly in terms
of second derivatives of f :

(∇f)′ =


∂2f
∂x2

1
· · · ∂2f

∂xn∂x1

...
. . .

...
∂2f

∂x1∂xn
· · · ∂2f

∂xn∂xn

 = H .

This matrix, denoted here by H, is known as the Hessian of f , which has entries:

Hi,j =
∂2f

∂xj∂xi
=

∂2f

∂xi∂xj
= Hj,i .

The fact that you can take partial derivatives in either order is a familiar fact from multivariable calculus (sometimes
called the “symmetry of mixed derivatives” or “equality of mixed partials”), and means that the Hessian is a
symmetric matrix H = HT . (We will later see that such symmetries arise very generally from the construction of
second derivatives.)

Example 53
For x ∈ R2 and the function f(x) = sin(x1) + x2

1x
3
2, its gradient is

∇f =

(
cos(x1) + 2x1x

3
2

3x2
1x

2
2

)
,

and its Hessian is

H = (∇f)′ =

(
− sin(x1) + 2x3

2 6x1x
2
2

6x1x
2
2 6x2

1x2

)
= HT .
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If we think of the Hessian as the Jacobian of ∇f , this tells us that H dx predicts the change in ∇f to first order:

d(∇f) = ∇f |x+dx − ∇f |x = H dx .

Note that ∇f |x+dx means ∇f evaluated at x + dx, which is very different from df = (∇f)T dx, where we act
f ′(x) = (∇f)T on dx.

Instead of thinking of H of predicting the first-order change in ∇f , however, we can also think of it as predicting
the second -order change in f , a quadratic approximation (which could be viewed as the first three terms in a
multidimensional Taylor series):

f(x+ δx) = f(x) + (∇f)T δx+
1

2
δxT H δx+ o(∥δx∥2) ,

where both ∇f and H are evaluated at x, and we have switched from an infinitesimal dx to a finite change δx so
that we emphasize the viewpoint of an approximation where terms higher than second-order in ∥δx∥ are dropped.
You can derive this in a variety of ways, e.g. by taking the derivative of both sides with respect to δx to reproduce
∇f |x+δx = ∇f |x +H δx+ o(δx): a quadratic approximation for f corresponds to a linear approximation for ∇f .
Related to this equation, another useful (and arguably more fundamental) relation that we can derive (and will
derive much more generally below) is:

dxTHdx′ = f(x+ dx+ dx′) + f(x)− f(x+ dx)− f(x+ dx′) = f ′′(x)[dx, dx′]

where dx and dx′ are two independent “infinitesimal” directions and we have dropped terms of higher than second
order. This formula is very suggestive, because it uses H to map two vectors into a scalar, which we will generalize
below into the idea of a bilinear map f ′′(x)[dx, dx′]. This formula is also obviously symmetric with respect to
interchange of dx and dx′ — f ′′(x)[dx, dx′] = f ′′(x)[dx′, dx] — which will lead us once again to the symmetry
H = HT below.

Remark 54. Consider the Hessian matrix versus other Jacobian matrices. The Hessian matrix expresses the
second derivative of a scalar-valued multivariate function, and is always square and symmetric. A Jacobian matrix,
in general, expresses the first derivative of a vector-valued multivariate function, may be non-square, and is rarely
symmetric. (However, the Hessian matrix is the Jacobian of the ∇f function!)

12.2 General second derivatives: Bilinear maps
Recall, as we have been doing throughout this class, that we define the derivative of a function f by a linearization
of its change df for a small (“infinitesimal”) change dx in the input:

df = f(x+ dx)− f(x) = f ′(x)[dx] ,

implicitly dropping higher-order terms. If we similarly consider the second derivative f ′′ as simply the same process
applied to f ′ instead of f , we obtain the following formula, which is easy to write down but will take some thought
to interpret:

df ′ = f ′(x+ dx′)− f ′(x) = f ′′(x)[dx′].

(Notation: dx′ is not some kind of derivative of dx; the prime simply denotes a different arbitrary small change
in x.) What kind of “thing” is df ′? Let’s consider a simple concrete example:
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Example 55
Consider the following function f(x) : R2 7→ R2 mapping two-component vectors x ∈ R2 to two-component
vectors f(x) ∈ R2:

f(x) =

(
x2
1 sin(x2)

5x1 − x3
2

)
.

Its first derivative is described by a 2× 2 Jacobian matrix:

f ′(x) =

(
2x1 sin(x2) x2

1 cos(x2)

5 −3x2
2

)

that maps a small change dx in the input vector x to the corresponding small change df = f ′(x)dx in the
output vector f .

What is df ′ = f ′′(x)[dx′]? It must take a small change dx′ = (dx′
1, dx

′
2) in x and return the first-order

change df ′ = f ′(x+ dx′)− f ′(x) in our Jacobian matrix f ′. If we simply take the differential of each entry of
our Jacobian (a function from vectors x to matrices f ′), we find:

df ′ =

(
2 dx′

1 sin(x2) + 2x1 cos(x2) dx
′
2 2x1 dx

′
1 cos(x2)− x2

1 sin(x2) dx
′
2

0 −6x2 dx
′
2

)
= f ′′(x)[dx′]

That is, df ′ is a 2× 2 matrix of “infinitesimal” entries, of the same shape as f ′.
From this viewpoint, f ′′(x) is a linear operator acting on vectors dx′ and outputting 2×2 matrices f ′′(x)[dx′],

but this is one of the many cases where it is easier to write down the linear operator as a “rule” than as a “thing”
like a matrix. The “thing” would have to either be some kind of “three-dimensional matrix” or we would have
to “vectorize” f ′ into a “column vector” of 4 entries in order to write its 4× 4 Jacobian, as in Sec. 3 (which can
obscure the underlying structure of the problem).

Furthermore, since this df ′ is a linear operator (a matrix), we can act it on another vector dx = (dx1, dx2)

to obtain:

df ′

(
dx1

dx2

)
=

(
2 sin(x2) dx

′
1 dx1 + 2x1 cos(x2)( dx

′
2 dx1 + dx′

1 dx2)− x2
1 sin(x2) dx

′
2 dx2

−6x2 dx
′
2 dx2

)
= f ′′(x)[dx′][dx] .

Notice that this result, which we will call f ′′(x)[dx′, dx] below, is the “same shape” as f(x) (a 2-component
vector). Moreover, it doesn’t change if we swap dx and dx′: f ′′(x)[dx′, dx] = f ′′(x)[dx, dx′], a key symmetry
of the second derivative that we will discuss further below.

df ′ is an (infinitesimal) object of the same “shape” as f ′(x), not f(x). Here, f ′ is a linear operator, so its change
df ′ must also be an (infinitesimal) linear operator (a “small change” in a linear operator) that we can therefore act
on an arbitrary dx (or δx), in the form:

df ′[dx] = f ′′(x)[dx′][dx] := f ′′(x)[dx′, dx] ,

where we combine the two brackets for brevity. This final result f ′′(x)[dx′, dx] is the same type of object (vector)
as the original output f(x). This implies that f ′′(x) is a bilinear map: acting on two vectors, and linear in either
vector taken individually. (We will see shortly that the ordering of dx and dx′ doesn’t matter: f ′′(x)[dx′, dx] =

f ′′(x)[dx, dx′].)
More precisely, we have the following.
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Definition 56 (Bilinear Map)

Let U, V,W be a vector spaces, not necessarily the same. Then, a bilinear map is a function B : U ×V →W ,
mapping a u ∈ U and v ∈ V to B[u, v] ∈W , such that we have linearity in both arguments:B[u, αv1 + βv2] = αB[u, v1] + βB[u, v2]

B[αu1 + βu2, v] = αB[u1, v] + βB[u2, v]

for any scalars α, β,
If W = R, i.e. the output is a scalar, then it is called a bilinear form.

Note that in general, even if U = V (the two inputs u, v are the “same type” of vector) we may have B[u, v] ̸=
B[v, u], but in the case of f ′′ we have something very special that happens. In particular, we can show that f ′′(x)

is a symmetric bilinear map, meaning

f ′′(x)[dx′, dx] = f ′′(x)[dx, dx′]

for any dx and dx′. Why? Because, applying the definition of f ′′ as giving the change in f ′ from dx′, and then the
definition of f ′ as giving the change in f from dx, we can re-order terms to obtain:

f ′′(x)[dx′, dx] = f ′(x+ dx′)[dx]− f ′(x)[dx]

=

f(x+ dx′ + dx︸ ︷︷ ︸
=dx+dx′

)− f(x+ dx′)

− (f(x+ dx)− f(x))

= f(x+ dx+ dx′) + f(x)− f(x+ dx)− f(x+ dx′)

= (f(x+ dx+ dx′)− f(x+ dx))− (f(x+ dx′)− f(x))

= f ′(x+ dx)[dx′]− f ′(x)[dx′]

= f ′′(x)[dx, dx′]

where we’ve boxed the middle formula for f ′′ which emphasizes its symmetry in a natural way. (The basic reason
why this works is that the “+” operation is always commutative for any vector space. A geometric interpretation
is depicted in Fig. 15.)

Example 57
Let’s review the familiar example from multivariable calculus, f : Rn → R. That is, f(x) is a scalar-valued
function of a column vector x ∈ Rn. What is f ′′?

Recall that
f ′(x) = (∇f)T =⇒ f ′(x)[dx] = scalar df = (∇f)T dx.

Similarly,

f ′′(x)[dx′, dx] = scalar from two vectors, linear in both

= dx′THdx ,

where H must be exactly the n × n matrix Hessian matrix introduced in Sec. 12.1, since an expression like
dx′THdx is the most general possible bilinear form mapping two vectors to a scalar. Moreover, since we now know
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Figure 15: Geometric interpretation of f ′′(x)[dx, dx′]: To first order, a function f maps parallelograms to par-
allelograms. To second order, however it “opens” parallelograms: The deviation from point B (the image of A)
from point C (the completion of the parallelogram) is the second derivative f ′′(x)[dx, dx′]. The symmetry of f ′′

as a bilinear form can be traced back geometrically to the mirror symmetry of the input parallelogram across its
diagonal from x to point A.

that f ′′ is always a symmetric bilinear form, we must have:

f ′′(x)[dx′, dx] = dx′THdx

= f ′′(x)[dx, dx′] = dxTHdx′ = (dxTHdx′)T (scalar = scalarT )

= dx′THT dx

for all dx and dx′. This implies that H = HT : the Hessian matrix is symmetric. As discussed in Sec. 12.1, we
already knew this from multi-variable calculus. Now, however, this “equality of mixed partial derivatives” is simply
a special case of f ′′ being a symmetric bilinear map.

As an example, let’s consider a special case of the general formula above:

Example 58
Let f(x) = xTAx for x ∈ Rn and A an n× n matrix. As above, f(x) ∈ R (scalar outputs). Compute f ′′.

The computation is fairly straightforward. Firstly, we have that

f ′ = (∇f)T = xT (A+AT ).

This implies that ∇f = (A + AT )x, a linear function of x. Hence, the Jacobian of ∇f is the Hessian f ′′ = H =

A+AT . Furthermore, note that this implies

f(x) = xTAx = (xTAx)T (scalar = scalarT )

= xTATx

=
1

2
(xTAx+ xTATx) =

1

2
xT (A+AT )x

=
1

2
xTHx =

1

2
f ′′[x, x] ,

which will turn out to be a special case of the quadratic approximations of Sec. 12.3 (exact in this example since
f(x) = xTAx is quadratic to start with).
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Example 59
Let f(A) = detA for A an n× n matrix. Express f ′′(A) as a rule for f ′′(A)[dA, dA′] in terms of dA and dA′.

From lecture 3, we have the first derivative

f ′(A)[dA] = df = det(A) tr(A−1dA).

Now, we want to compute the change d′(df) = d′(f ′(A)[dA]) = f ′(A+dA′)[dA]−f ′(A)[dA] in this formula, i.e. the
differential (denoted d′) where we change A by dA′ while treating dA as a constant:

f ′′(A)[dA, dA′] = d′(detA tr(A−1dA))

= detA tr(A−1dA′) tr(A−1dA)− detA tr(A−1 dA′A−1 dA)

= f ′′(A)[dA′, dA]

where the last line (symmetry) can be derived explicitly by the cyclic property of the trace (although of course it
must be true for any f ′′). Although f ′′ here is a perfectly good bilinear form acting on matrices dA, dA′, it is not
very natural to express f ′′ as a “Hessian matrix.”

If we really wanted to express f ′′ in terms of an explicit Hessian matrix, we could use the the “vectorization”
approach of Sec. 3. Let us consider, for example, the term tr(A−1 dA′A−1 dA) using Kronecker products (Sec. 3).
In general, for matrices X,Y,B,C:

(vecX)T (B ⊗ C) vecY = (vecX)T vec (CY BT ) = tr(XTCY BT ) = tr(BTXTCY ) ,

recalling that (vecX)T vecY = tr(XTY ) is the Frobenius inner product (Sec. 5). Thus,

tr(A−1 dA′A−1 dA) = vec (dA′T )
T
(A−T ⊗A−1) vec (dA) .

This is still not quite in the form we want for a Hessian matrix, however, because it involves vec (dA′T ) rather
than vec (dA′) (the two vectors are related by a permutation matrix, sometimes called a “commutation” matrix).
Completing this calculation would be a nice exercise in mastery of Kronecker products, but getting an explicit
Hessian seems like a lot of algebra for a result of dubious utility!

12.3 Generalized quadratic approximation
So how do we ultimately think about f ′′? We know that f ′ is the linearization/linear approximation of f(x), i.e.

f(x+ δx) = f(x) + f ′(x)[δx] + o(∥δx∥).

Now, just as we did for the simple case of Hessian matrices in Sec. 12.1 above, we can use f ′′ to form a quadratic
approximation of f(x). In particular, one can show that

f(x+ δx) = f(x) + f ′(x)[δx] +
1

2
f ′′(x)[δx, δx] + o(∥δx∥2).

Note that the 1
2 factor is just as in the Taylor series. To derive this, simply plug the quadratic approximation into

f ′′(x)[dx, dx′] = f(x+ dx+ dx′) + f(x)− f(x+ dx)− f(x+ dx′).
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and check that the right-hand side reproduces f ′′(x). (Note how dx and dx′ appear symmetrically in this formula,
which reflects the symmetry of f ′′.)

12.4 Hessians and optimization
Many important applications of second derivatives, Hessians, and quadratic approximations arise in optimization:
minimization (or maximization) of functions f(x).16

12.4.1 Newton-like methods

When searching for a local minimum (or maximum) of a complicated function f(x), a common procedure is to
approximate f(x + δx) by a simpler “model” function for small δx, and then to optimize this model to obtain a
potential optimization step. For example, approximating f(x+δx) ≈ f(x)+f ′(x)[δx] (an affine model, colloquially
called “linear”) leads to gradient descent and related algorithms. A better approximation for f(x + δx) will often
lead to faster-converging algorithms, and so a natural idea is to exploit the second derivative f ′′ to make a quadratic
model, as above, and accelerate optimization.

For unconstrained optimization, minimizing f(x) corresponds to finding a root of the derivative f ′ = 0 (i.e.,
∇f = 0), and a quadratic approximation for f yields a first-order (affine) approximation f ′(x + δx) ≈ f ′(x) +

f ′′(x)[δx] for the derivative f ′. In Rn, this is δ(∇f) ≈ Hδx. So, minimizing a quadratic model is effectively a
Newton step δx ≈ −H−1∇f to find a root of ∇f via first-order approximation. Thus, optimization via quadratic
approximations is often viewed as a form of Newton algorithm. As discussed below, it is also common to employ
approximate Hessians in optimization, resulting in “quasi-Newton” algorithms.

More complicated versions of this idea arise in optimization with constraints, e.g. minimizing an objective func-
tion f(x) subject to one or more nonlinear inequality constraints ck(x) ≤ 0. In such cases, there are a variety of
methods that take both first and second derivatives into account, such as “sequential quadratic programming”17

(SQP) algorithms that solve a sequence of “QP” approximations involving quadratic objectives with affine con-
straints (see e.g. the book Numerical Optimization by Nocedal and Wright, 2006).

There are many technical details, beyond the scope of this course, that must be resolved in order to translate
such high-level ideas into practical algorithms. For example, a quadratic model is only valid for small enough δx, so
there must be some mechanism to limit the step size. One possibility is “backtracking line search”: take a Newton
step x+δx and, if needed, progressively “backtrack” to x+δx/10, x+δx/100, . . . until a sufficiently decreased value
of the objective is found. Another commonplace idea is a “trust region”: optimize the model with the constraint
that δx is sufficiently small, e.g. ∥δx∥ ≤ s (a spherical trust region), along with some rules to adaptively enlarge
or shrink the trust-region size (s) depending on how well the model predicts δf . There are many variants of
Newton/SQP-like algorithms depending on the choices made for these and other details.

12.4.2 Computing Hessians

In general, finding f ′′ or the Hessian is often computationally expensive in higher dimensions. If f(x) : Rn → R,
then the Hessian, H, is an n×n matrix, which can be huge if n is large—even storing H may be prohibitive, much

16Much of machine learning uses only variations on gradient descent, without incorporating Hessian information except implicitly
via “momentum” terms. Partly this can be explained by the fact that optimization problems in ML are typically solved only to low
accuracy, often have nonsmooth/stochastic aspects, rarely involve nonlinear constraints, and are often very high-dimensional. This is
only a small corner of the wider universe of computational optimization!

17The term “programming” in optimization theory does not refer to software engineering, but is rather an anachronistic term for
optimization problems. For example, “linear programming” (LP) refers to optimizing affine objectives and affine constraints, while
“quadratic programming” (QP) refers to optimizing convex quadratic objectives with affine constraints.
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less computing it. When using automatic differentiation (AD), Hessians are often computed by a combination of
forward and reverse modes (Sec. 8.4.1), but AD does not circumvent the fundamental scaling difficulty for large n.

Instead of computing H explicitly, however, one can instead approximate the Hessian in various ways; in the
context of optimization, approximate Hessians are found in “quasi-Newton” methods such as the famous “BFGS”
algorithm and its variants. One can also derive efficient methods to compute Hessian–vector products Hv without
computing H explicitly, e.g. for use in Newton–Krylov methods. (Such a product Hv is equivalent to a directional
derivative of f ′, which is efficiently computed by “forward-over-reverse” AD as in Sec. 8.4.1.)

12.4.3 Minima, maxima, and saddle points

Generalizing the rules you may recall from single- and multi-variable calculus, we can use the second derivative
to determine whether an extremum is a minimum, maximum, or saddle point. Firstly, an extremum of a scalar
function f is a point x0 such that f ′(x0) = 0. That is,

f ′(x0)[δx] = 0

for any δx. Equivalently,
∇f
∣∣
x0

= f ′(x0)
T = 0.

Using our quadratic approximation around x0, we then have that

f(x0 + δx) = f(x0) + f ′(x0)[δx]︸ ︷︷ ︸
=0

+
1

2
f ′′(x0)[δx, δx] + o(∥δx∥2).

The definition of a local minimum x0 is that f(x0 + δx) > f(x0) for any δx ̸= 0 with ∥δx∥ sufficiently small. To
achieve this at a point where f ′ = 0, it is enough to have f ′′ be a positive-definite quadratic form:

f ′′(x0)[δx, δx] > 0 for all δx ̸= 0 ⇐⇒ positive-definite f ′′(x0) .

For example, for inputs x ∈ Rn, so that f ′′ is a real-symmetric n×n Hessian matrix, f ′′(x0) = H(x0) = H(x0)
T ,

this corresponds to the usual criteria for a positive-definite matrix:

f ′′(x0)[δx, δx] = δxTH(x0)δx > 0 for all δx ̸= 0 ⇐⇒ H(x0) positive-definite ⇐⇒ all eigenvalues of H(x0) > 0.

In first-year calculus, one often focuses in particular on the 2-dimensional case, where H is a 2× 2 matrix. In
the 2× 2 case, there is a simple way to check the signs of the two eigenvalues of H, in order to check whether an
extremum is a minimum or maximum: the eigenvalues are both positive if and only if det(H) > 0 and tr(H) > 0,
since det(H) = λ1λ2 and tr(H) = λ1 + λ2. In higher dimensions, however, one needs more complicated techniques
to compute eigenvalues and/or check positive-definiteness, e.g. as discussed in MIT courses 18.06 (Linear Algebra)
and/or 18.335 (Introduction to Numerical Methods). (In practice, one typically checks positive-definiteness by
performing a form of Gaussian elimination, called a Cholesky factorization, and checking that the diagonal “pivot”
elements are > 0, rather than by computing eigenvalues which are much more expensive.)

Similarly, a point x0 where∇f = 0 is a local maximum if f ′′ is negative-definite, or equivalently if the eigenvalues
of the Hessian are all negative. Additionally, x0 is a saddle point if f ′′ is indefinite, i.e. the eigenvalues include both
positive and negative values. However, cases where some eigenvalues are zero are more complicated to analyze;
e.g. if the eigenvalues are all ≥ 0 but some are = 0, then whether the point is a minimum depends upon higher
derivatives.
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12.5 Further Reading
All of this formalism about “bilinear forms” and so forth may seem like a foray into abstraction for the sake of
abstraction. Can’t we always reduce things to ordinary matrices by choosing a basis (“vectorizing” our inputs
and outputs)? However, we often don’t want to do this for the same reason that we often prefer to express first
derivatives as linear operators rather than as explicit Jacobian matrices. Writing linear or bilinear operators as
explicit matrices, e.g. vec(AdA + dAA) = (I ⊗ A + AT ⊗ I) vec(dA) as in Sec. 3, often disguises the underlying
structure of the operator and introduces a lot of algebraic complexity for no purpose, as well as being potentially
computationally costly (e.g. exchanging small matrices A for large ones I ⊗A).

As we discussed in this chapter, an important generalization of quadratic operations to arbitrary vector spaces
come in the form of bilinear maps and bilinear forms, and there are many textbooks and other sources discussing
these ideas and variations thereof. For example, we saw that the second derivative can be seen as a symmetric
bilinear form. This is closely related to a quadratic form Q[x], which what we get by plugging the same vector
twice into a symmetric bilinear form B[x, y] = B[y, x], i.e. Q[x] = B[x, x]. (At first glance, it may seem like Q

carries “less information” than B, but in fact this is not the case. It is easy to see that one can recover B from Q

via B[x, y] = (Q[x+ y]−Q[x− y])/4, called a “polarization identity.”) For example, the f ′′(x)[δx, δx]/2 term that
appears in quadratic approximations of f(x + δx) is a quadratic form. The most familiar multivariate version of
f ′′(x) is the Hessian matrix when x is a column vector and f(x) is a scalar, and Khan Academy has an elementary
introduction to quadratic approximation.

Positive-definite Hessian matrices, or more generally definite quadratic forms f ′′, appear at extrema (f ′ = 0) of
scalar-valued functions f(x) that are local minima. There are a lot more formal treatments of the same idea, and
conversely Khan Academy has the simple 2-variable version where you can check the sign of the 2× 2 eignevalues
just by looking at the determinant and a single entry (or the trace). There’s a nice stackexchange discussion on
why an ill-conditioned Hessian tends to make steepest descent converge slowly. Some Toronto course notes on the
topic may also be useful.

Lastly, see for example these Stanford notes on sequential quadratic optimization using trust regions (Section
2.2), as well as the 18.335 notes on BFGS quasi-Newton methods. The fact that a quadratic optimization problem in
a sphere has strong duality, and hence is efficiently solvable, is discussed in Section 5.2.4 of the Convex Optimization
book. There has been a lot of work on automatic Hessian computation, but for large-scale problems you may only
be able to compute Hessian–vector products efficiently in general, which are equivalent to a directional derivative
of the gradient and can be used (for example) for Newton–Krylov methods.

The Hessian matrix is also known as the “curvature matrix" especially in optimization. If we have a scalar
function f(x) of n variables, its “graph” is the set of points (x, f(x)) in Rn+1; we call the last dimension the
“vertical" dimension. At a “critical point” x (where ∇f = 0), then vTHv is the ordinary curvature sometimes
taught in first-year calculus, of the curve obtained by intersecting the graph with the plane in the direction v from
x and the vertical (the “normal section”). The determinant of H, sometimes known as the Hessian determinant,
yields the Gaussian curvature.

A closely related idea is the derivative of the unit normal. For a graph as in the preceding paragraph we may
assume that f(x) = xTHx/2 to second order. It is easy to see that at any point x the tangents have the form
(dx, f ′(x)[dx]) = (dx, xTHdx) and the normal is then (Hx, 1). Near x = 0 this a unit normal to second order,
and its derivative is (Hdx, 0). Projecting onto the horizontal, we see that the Hessian is the derivative of the unit
normal. This is called the “shape operator" in differential geometry.
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