Matrix Calculus lecture notes:

How can we use so many derivatives?

... a couple of applications

... and the "adjoint method"

Matrix Calculus, IAP 2023 Profs. Steven G. Johnson & Alan Edelman, MIT

Newton's method: Nonlinear equations via Linearization

scalar out scalar in

18.01: solving f(x) = 0:

1. Linearize:

$$f(x+\delta x) \approx f(x) + f'(x)\delta x$$

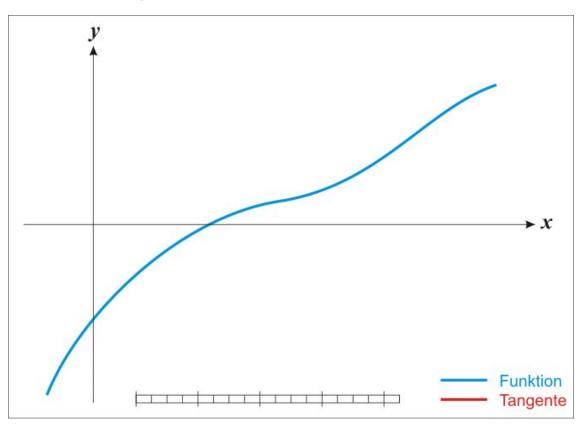
2. Solve linear equation

$$f(x) + f'(x)\delta x = 0$$

$$\Rightarrow \delta x = -f(x)/f'(x)$$

3. Update x

$$x \leftarrow x - f(x)/f'(x)$$



Multidimensional Newton's method: Real world is nonlinear!

vector out vector in

18.06: solving f(x) = 0 where $x \in \mathbb{R}^n$ (input=vector) and f and $0 \in \mathbb{R}^n$ (output=vector)

Jacobian

1. Linearize:

$$f(x+\delta x) \approx f(x) + f'(x)\delta x$$

2. Solve linear equation

$$f(x) + f'(x)\delta x = 0$$

$$\Rightarrow \delta x = -inf(ex) = f(x)$$
Jacobian

3. Update x $x \leftarrow x - f'(x)^{-1}f(x)$

That's it! Once we have the Jacobian, just solve a linear system on each step.

Converges amazingly fast:

doubles #digits (squares error)

on each step ("quadratic convergence")!

Caveat: needs a starting guess close enough to root (google "Newton fractal"...)

Nonlinear optimization: min f(x), $x \in \mathbb{R}^n$

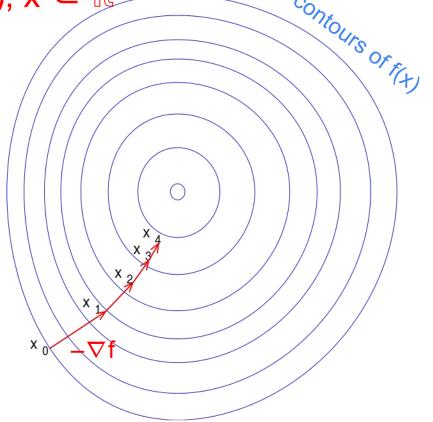
(or maximize)

-∇f points downhill (steepest descent)

Even if we have $n=10^6$ parameters \mathbf{x} , we can evolve them all simultaneously in the downhill direction.

Reverse-mode / adjoint / left-to-right / backpropagation: computing ∇f costs about same as evaluating f(x) once.

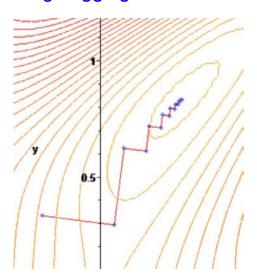
Makes large-scale optimization practical: training neural nets, optimizing shape of airplane wing, portfolio optimization...



Nonlinear optimization: Lots of complications

- How far do we "step" in -∇f direction?
 - Line search: $\min_{\alpha} f(x-\alpha \nabla f)$ backtrack if not improved
 - and/or Limit step size to trust region, grow/shrink as needed
 - Details are tricky to get right
- Constraints: min f(x) subject to $g_k(x) \le 0$
 - Algorithms still need gradients ∇g_k!
- Faster convergence by "remembering" previous steps
 - Steepest-descent tends to "zig-zag" in narrow valleys
 - "Momentum" terms & conjugate gradients simple "memory"
 - Fancier: estimate second derivative "Hessian matrix" from sequence of ∇f changes: BFGS algorithm
- Lots of refinements & competing algorithms ...
 - try out multiple (pre-packaged) algorithms on your problem!

slow convergence: zig-zagging downhill



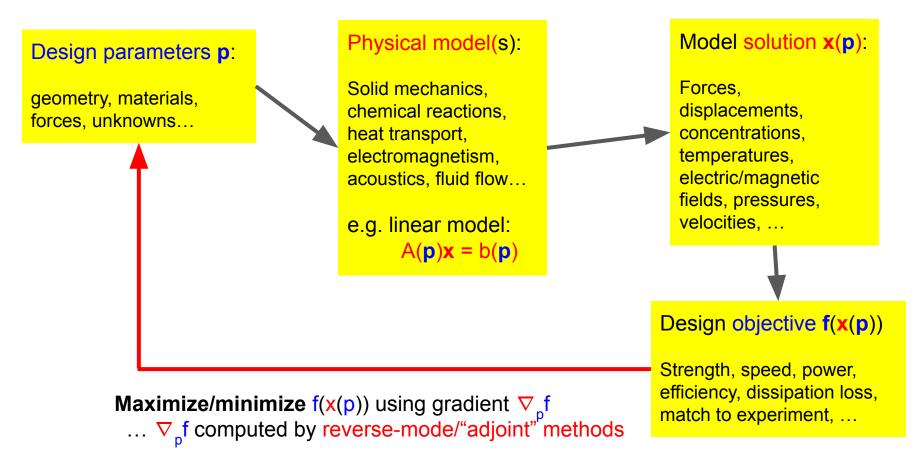
This image is in the public domain.

Some parting advice:

Often, the main trick is finding the right mathematical formulation of your problem — i.e. what function, what constraints, what parameters? — which lets you exploit the best algorithms.

...but if you have many (> 10) parameters, always use an **analytical gradient** (not finite differences!) ... computed efficiently in **reverse mode**

Engineering/physical optimization

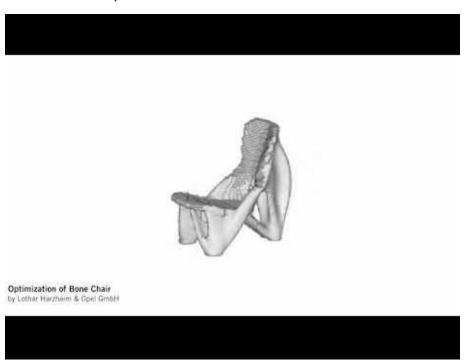


Example: "Topology optimization" of a chair

...optimizing every voxel to support weight with minimal material

(either voxel "density" or a "level-set" function)

© Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.



© Joris Laarman. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

Adjoint differentiation

(yet another example of left-to-right/reverse-mode differentiation)

Example: gradient of scalar f(x(p)) where A(p)x=b, i.e. $f(A(p)^{-1}b)$

•
$$df = f'(x) dx = f'(x) d(A^{-1}) b = -f'(x) A^{-1} dA A^{-1} b$$

row row row vec solution \mathbf{v}^{T}

row solution \mathbf{v}^{T}

- "Adjoint method:" Just multiply left-to-right! $df = -(f'(x) A^{-1}) dA x$
 - i.e. solve "adjoint equation" $A^T v = f'(x)^T$ for v ("adjoint" meaning "transpose")
 - \rightarrow ...then df = v^T dA x
 - ∘ For any given parameter $p \square$, $\partial f/\partial p \square = v^T \partial A/\partial p \square x$ (& usually $\partial A/\partial p \square$ is very sparse)
- i.e. Takes only two solves to get both f and ∇f
 - \circ Solve Ax=b once to get f(x), then solve *one* more time with A^T for v
 - \circ ... then *all* derivatives $\partial f/\partial p \square$ are just some cheap dot products

Don't use right-to-left "forward-mode" derivatives with lots of parameters!

$$\partial f/\partial p \square = -f'(x) (A^{-1} (\partial A/\partial p \square x)) = \text{one solve per parameter } p \square !$$

row
vector

solve

Right-to-left (a.k.a. forward mode) better when 1 input & many outputs.

Left-to-right (a.k.a. backward mode, adjoint, backpropagation) better when **1 output** & many inputs

(Note: Using <u>dual numbers</u> is forward mode. Most AD uses the term "forward" if it is forward mode. e.g. <u>ForwardDiff.jl</u> in Julia is forward mode. <u>jax.jacfwd</u> in Python is forward mode.)

Don't use finite differences with lots of parameters!

$$\partial f/\partial p \square \approx [f(p + \epsilon e \square) - f(p)] / \epsilon$$
 (e \(\text{ = unit vector, } \epsilon = \text{small number})

= requires one solve x(p + ε e □) for each parameter p □

... even worse if you use fancier finite-difference approximations

Adjoint differentiation with nonlinear equations

Example: gradient of scalar f(x(p)) where $x(p) \in \mathbb{R}^n$ solves $g(p,x) = 0 \in \mathbb{R}^n$

- $g(p,x) = 0 \Rightarrow dg = \partial g/\partial p \, dp + \partial g/\partial x \, dx = 0 \Rightarrow dx = -(\partial g/\partial x)^{-1} \, \partial g/\partial p \, dp$ [a.k.a. <u>"implicit-function theorem"</u>]

 Jacobian,
 matrix

 = inverse Jacobian,
 also used in Newton
 solver for x!
- df = f'(x) dx = (f'(x) $(\partial g/\partial x)^{-1}$) $\partial g/\partial p$ dp

```
= "adjoint"
solution v<sup>T</sup>
```

 \implies adjoint equation: $(\partial g/\partial x)^T \mathbf{v} = f'(x)^T$

- i.e. Takes only two solves to get both f and ∇f
 - one nonlinear solve for x, and one linear solve for v!
 - \circ ... then *all* derivatives $\partial f/\partial p \square$ are just some cheap dot products

You need to understand adjoint methods even if you use AD

- Helps understand when to use forward vs. reverse mode!
- Many physical models call large software packages written over decades in various languages, and cannot be differentiated automatically by AD
 - You often just need to supply a "vector—Jacobian product" y^Tdx for physics, or even just part
 of the physics, and then AD will differentiate the rest and apply the chain rule for you
- Often models involve approximate calculations, but AD tools don't know this & spend extra effort trying to differentiate the *error* in your approximation
 - o If you solve for x by an iterative method (e.g. Newton), it is inefficient for AD to backpropagate *through* the iteration ... instead, you want take derivative of the underlying equation g(p,x) = 0
 - For discretized physics (e.g. a finite-element methods), it is often more efficient (and sufficiently accurate) to apply adjoint method to continuous physics ("differentiate-then-discretize")

MIT OpenCourseWare https://ocw.mit.edu

18.S096 Matrix Calculus for Machine Learning and Beyond Independent Activities Period (IAP) 2023

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.