Mabnix Calewlus lecture notes:

How can we use so many derivatives?
... a couple of applications
... and the "adjoint method”

Meakrix Calleulus, IAP 2023
Profs. Steven G. Johnson & Alan Edelman, MIT

Newton’s method: Nonlinear equations via Linearization

scalar in

scalar out
O

18.01: solving f(x) = 0:

1.

Linearize:
f(x+0x) = f(x) + f'(x)Ox
Solve linear equation
f(x) + f(x)dx = 0
= Ox = —f(x)/f'(x)
Update x
X «— X — f(x)/f'(x)

/

} 3 I
 E] O N I PP PO B O |
I T T

Il I
E b =l -p- 0 1 -1 |
T T

Funktion
Tangente

Courtesy of Ralf Pfeifer on Wikimedia. License: CC BY-SA. Some rights reserved. This content is excluded
from our Creative Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use.

https://de.wikipedia.org/wiki/Benutzer:Ralf_Pfeifer
https://ocw.mit.edu/help/faq-fair-use

Multidimensional Newton’s method: Real world is nonlinear!

vector in

vectorout\
18.06: solving f(x) = 0 where x € R (input=vector) and fand 0 € Rr"

(output=vector)

i i Jacobian
1. Linearize:

) H ' .
f(x+0x) = f(x) + F'(x)5x That s it! On_ce we have the Jacobian,
just solve a linear system on each step.
2. Solve linear equation
f(x) + f(x)0x =0 Converges ama;ipgly fast:
_ doubles #digits (squares error)
= OXx = ji(ggfnf(x) on each step (“quadratic convergence”)!

Caveat: needs a starting guess
3. Update x close enough to root
X «— X — f'(x)7"(x) (google “Newton fractal’...)

Nonlinear optimization: min f(x), x € "

(or maximize)

—Vf points downhill (steepest descent)

Even if we have n=10° parameters x, we
can evolve them all simultaneously in the
downbhill direction.

Reverse-mode / adjoint / left-to-right /
backpropagation: computing Vf costs
about same as evaluating f(x) once.

Makes large-scale optimization practical:
training neural nets, optimizing shape of
airplane wing, portfolio optimization...

This image is in the public domain.

Nonlinear optimization: Lots of complications

How far do we “step” in =V f direction?

©)

©)

©)

Line search: min_f(x—aVf) — backtrack if not improved
and/or Limit step size to trust region, grow/shrink as needed
Details are tricky to get right

Constraints: min f(x) subject to g, (x) = 0

©)

Algorithms still need gradients ng!

Faster convergence by “remembering” previous steps

©)

©)

©)

Steepest-descent tends to “zig-zag” in narrow valleys
“Momentum” terms & conjugate gradients — simple “memory”
Fancier: estimate second derivative “Hessian matrix” from
sequence of Vf changes: BFGS algorithm

Lots of refinements & competing algorithms ...

©)

try out multiple (pre-packaged) algorithms on your problem!
3)

slow convergence:
zig-zagging downhill

14

0.5

This image is in the public domain.

Some parting advice:

Often, the main trick is finding the right mathematical
formulation of your problem — i.e. what function, what
constraints, what parameters”? — which lets you exploit
the best algorithms.

...but if you have many (> 10) parameters,
always use an analytical gradient (not finite differences!)
... computed efficiently in reverse mode

Engineering/physical optimization

Design parameters p: Physical model(s):
Solid mechanics,

geometry, materials,) :
chemical reactions,

forces, unknowns...

A electromagnetism,
acoustics, fluid flow...

e.g. linear model:
A(p)x = b(p)

Maximize/minimize f(x(p)) using gradient fo
fo computed by reverse-mode/“adjoint” methods

Model solution x(p):

Forces,
displacements,

heat transport, - concentrations,

temperatures,
electric/magnetic
fields, pressures,
velocities, ...

v

Design objective f(x(p))

Strength, speed, power,
efficiency, dissipation loss,
match to experiment, ...

Example: “Topology optimization” of a chair

...optimizing every voxel to support weight with minimal material
(either voxel “density” or a “level-set” function)

Optimization of Bone Chair

© Source unknown. All rights reserved. This content is © Joris Laarman. All rights reserved. This content is
excluded from our Creative Commons license. For more excluded from our Creative Commons license. For more
information, see https://ocw.mit.edu/help/faq-fair-use. information, see https://ocw.mit.edu/help/faq-fair-use.

http://www.youtube.com/watch?v=bJ_nSSBl040
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use

Adjoint differentiation
(yet another example of left-to-right/reverse-mode differentiation)

Example: gradient of scalar f(x(p)) where A(p)x=b, i.e. f(A(p)~'b)

o df=f(x)dx=F(x)dA ") b=—=Fx)A"dAA" b
row 3 row

L = “adjoint”
vec o vec . T
X solution v

e “Adjoint method:” Just multiply left-to-right! df = — (f(x) A™") dA x

=X

o i.e. solve “adjoint equation” A'v = f'(x)" forv (“adjoint’ meaning “transpose”)
o ..thendf=v'dAx

o For any given parameter p(l, of/dp[]l = v’ dA/dpLl x (& usually dA/dpL] is very
sparse)

e i.e. Takes only two solves to get both f and Vf

o Solve Ax=b once to get f(x), then solve one more time with AT for v
o ... then all derivatives of/dp_] are just some cheap dot products

Don’t use right-to-left “forward-mode” derivatives
with lots of parameters!

offop) = — f'(x) (A~ (0A/dp[] x)) = one solve per parameter p[!

fow = vector (different rhs)

vector
solve

Right-to-left (a.k.a. forward mode) better when 1 input & many outputs.

Left-to-right (a.k.a. backward mode, adjoint, backpropagation) better
when 1 output & many inputs

(Note: Using dual numbers is forward mode. Most AD uses the term
“forward” if it is forward mode. e.g. ForwardDiff.jl in Julia is forward mode.
lax.jacfwd in Python is forward mode.)

10

https://en.wikipedia.org/wiki/Dual_number
https://github.com/JuliaDiff/ForwardDiff.jl
https://jax.readthedocs.io/en/latest/notebooks/autodiff_cookbook.html#jacobians-and-hessians-using-jacfwd-and-jacrev

Don’t use finite differences with lots of parameters!

offopl =[f(p+eeld)—1(p)]/¢c (eJ = unit vector, € = small number)

= requires one solve x(p + € el]) for each parameter p_

... even worse if you use fancier finite-difference approximations

11

Adjoint differentiation with nonlinear equations

Example: gradient of scalar f(x(p)) where x(p) € R solves g(p,x) =0 € Rn

e g(p,x)=0=dg=0g/dpdp + dg/oxdx=0 = dx = —(8g/ax)‘1 dg/op dp

k.a. “imolicit-function th : Jacobian, = inverse Jacobian,
[a.k.a. Zimplicit-function theorem’] matrix also used in Newton
solver for x!

o df=f(x)dx=—(f(x)(0g/ox)") agldp dp

= “adjoint”
solution vT

— adjoint equation: (9g/dx)"v = f'(x)"

e i.e. Takes only two solves to get both fand Vf

o one nonlinear solve for x, and one linear solve for v!
o ... then all derivatives of/opL] are just some cheap dot products

12

https://en.wikipedia.org/wiki/Implicit_function_theorem

You need to understand adjoint methods even if you use AD

Helps understand when to use forward vs. reverse mode!

Many physical models call large software packages written over decades in

various languages, and cannot be differentiated automatically by AD
o You often just need to supply a “vector—Jacobian product” y'dx for physics, or even just part
of the physics, and then AD will differentiate the rest and apply the chain rule for you

Often models involve approximate calculations, but AD tools don’t know

this & spend extra effort trying to differentiate the error in your approximation
o If you solve for x by an iterative method (e.g. Newton), it is inefficient for AD to
backpropagate through the iteration ... instead, you want take derivative of the underlying
equation g(p,x) =0
o For discretized physics (e.g. a finite-element methods), it is often more efficient (and
sufficiently accurate) to apply adjoint method to continuous physics

(“differentiate-then-discretize”)
13

MIT OpenCourseWare
https://ocw.mit.edu

18.S096 Matrix Calculus for Machine Learning and Beyond
Independent Activities Period (IAP) 2023

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/terms
https://ocw.mit.edu

	Blank Page

