
Matrix Calculus lecture notes:
How can we use so many derivatives?

… a couple of applications
… and the “adjoint method”

Matrix Calculus, IAP 2023
Profs. Steven G. Johnson & Alan Edelman, MIT

1

Newton’s method: Nonlinear equations via Linearization

18.01: solving f(x) = 0:

1. Linearize:

 f(x+δx) ≈ f(x) + f′(x)δx

2. Solve linear equation

f(x) + f’(x)δx = 0

⇒ δx = –f(x)/f′(x)

3. Update x

x ⟵ x – f(x)/f′(x)

scalar out scalar in

2

Courtesy of Ralf Pfeifer on Wikimedia. License: CC BY-SA. Some rights reserved. This content is excluded
from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

https://de.wikipedia.org/wiki/Benutzer:Ralf_Pfeifer
https://ocw.mit.edu/help/faq-fair-use

Multidimensional Newton’s method: Real world is nonlinear!

18.06: solving f(x) = 0 where x ∈ ℝⁿ (input=vector) and f and 0 ∈ ℝⁿ
(output=vector)
1. Linearize:
 f(x+δx) ≈ f(x) + f′(x)δx

2. Solve linear equation

f(x) + f’(x)δx = 0

⇒ δx = –f′(x)–1f(x)

3. Update x

x ⟵ x – f′(x)–1f(x)

Jacobian

inverse
Jacobian

That’s it! Once we have the Jacobian,
just solve a linear system on each step.

Converges amazingly fast:
doubles #digits (squares error)
on each step (“quadratic convergence”)!

Caveat: needs a starting guess
 close enough to root

(google “Newton fractal”…)

vector out vector in

3

Nonlinear optimization: min f(x), x ∈ ℝn

–∇f points downhill (steepest descent)

Even if we have n=106 parameters x, we
can evolve them all simultaneously in the
downhill direction.

Reverse-mode / adjoint / left-to-right /
backpropagation: computing ∇f costs
about same as evaluating f(x) once.

Makes large-scale optimization practical:
training neural nets, optimizing shape of
airplane wing, portfolio optimization…

(or maximize)

contours of f(x)

–∇f

This image is in the public domain. 4

Nonlinear optimization: Lots of complications

● How far do we “step” in –∇f direction?
○ Line search: minα f(x–α∇f) — backtrack if not improved
○ and/or Limit step size to trust region, grow/shrink as needed
○ Details are tricky to get right

● Constraints: min f(x) subject to gk(x) ≤ 0
○ Algorithms still need gradients ∇gk!

● Faster convergence by “remembering” previous steps
○ Steepest-descent tends to “zig-zag” in narrow valleys
○ “Momentum” terms & conjugate gradients — simple “memory”
○ Fancier: estimate second derivative “Hessian matrix” from

sequence of ∇f changes: BFGS algorithm

● Lots of refinements & competing algorithms …
○ try out multiple (pre-packaged) algorithms on your problem!

slow convergence:
zig-zagging downhill

This image is in the public domain.
5

Some parting advice:

Often, the main trick is finding the right mathematical
formulation of your problem — i.e. what function, what
constraints, what parameters? — which lets you exploit
the best algorithms.

…but if you have many (> 10) parameters,
 always use an analytical gradient (not finite differences!)
 … computed efficiently in reverse mode

6

Engineering/physical optimization

Design parameters p:

geometry, materials,
forces, unknowns…

Physical model(s):

Solid mechanics,
chemical reactions,
heat transport,
electromagnetism,
acoustics, fluid flow…

e.g. linear model:
A(p)x = b(p)

Model solution x(p):

Forces,
displacements,
concentrations,
temperatures,
electric/magnetic
fields, pressures,
velocities, …

Design objective f(x(p))

Strength, speed, power,
efficiency, dissipation loss,
match to experiment, …Maximize/minimize f(x(p)) using gradient ∇ p

f
 … ∇ p

f computed by reverse-mode/“adjoint” methods 7

Example: “Topology optimization” of a chair
…optimizing every voxel to support weight with minimal material

(either voxel “density” or a “level-set” function)

8

© Source unknown. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see https://ocw.mit.edu/help/faq-fair-use.

© Joris Laarman. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see https://ocw.mit.edu/help/faq-fair-use.

http://www.youtube.com/watch?v=bJ_nSSBl040
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use

Adjoint differentiation
(yet another example of left-to-right/reverse-mode differentiation)

Example: gradient of scalar f(x(p)) where A(p)x=b, i.e. f(A(p)–1b)

● df = f′(x) dx = f’(x) d(A–1) b = – f′(x) A–1 dA A–1 b

● “Adjoint method:” Just multiply left-to-right! df = – (f′(x) A–1) dA x

○ i.e. solve “adjoint equation” ATv = f’(x)T for v (“adjoint” meaning “transpose”)
○ …then df = vT dA x
○ For any given parameter pₖ, ∂f/∂pₖ = vT ∂A/∂pₖ x (& usually ∂A/∂pₖ is very

sparse)

● i.e. Takes only two solves to get both f and ∇f 🤓
○ Solve Ax=b once to get f(x), then solve one more time with AT for v
○ … then all derivatives ∂f/∂pₖ are just some cheap dot products

row
vec

row
vec

m
atrix

= x = “adjoint”
solution vT

9

Don’t use right-to-left “forward-mode” derivatives
with lots of parameters!

∂f/∂pₖ = – f′(x) (A–1 (∂A/∂pₖ x)) = one solve per parameter pₖ! ☹

Right-to-left (a.k.a. forward mode) better when 1 input & many outputs.
Left-to-right (a.k.a. backward mode, adjoint, backpropagation) better
when 1 output & many inputs

(Note: Using dual numbers is forward mode. Most AD uses the term
“forward” if it is forward mode. e.g. ForwardDiff.jl in Julia is forward mode.
jax.jacfwd in Python is forward mode.)

= vector row
vector

solve

(different rhs)

10

https://en.wikipedia.org/wiki/Dual_number
https://github.com/JuliaDiff/ForwardDiff.jl
https://jax.readthedocs.io/en/latest/notebooks/autodiff_cookbook.html#jacobians-and-hessians-using-jacfwd-and-jacrev

Don’t use finite differences with lots of parameters!

∂f/∂pₖ ≈ [f(p + ε eₖ) – f(p)] / ε (eₖ = unit vector, ε = small number)

= requires one solve x(p + ε eₖ) for each parameter pₖ ☹

… even worse if you use fancier finite-difference approximations

11

Adjoint differentiation with nonlinear equations

Example: gradient of scalar f(x(p)) where x(p) ∈ ℝⁿ solves g(p,x) = 0 ∈ ℝⁿ

● g(p,x) = 0 ⟹ dg = ∂g/∂p dp + ∂g/∂x dx = 0 ⟹ dx = –(∂g/∂x)–1 ∂g/∂p dp

● df = f′(x) dx = – (f′(x) (∂g/∂x)–1) ∂g/∂p dp

● i.e. Takes only two solves to get both f and ∇f 🤓
○ one nonlinear solve for x, and one linear solve for v!
○ … then all derivatives ∂f/∂pₖ are just some cheap dot products

= inverse Jacobian,
also used in Newton

solver for x!

= “adjoint”
solution vT ⟹ adjoint equation: (∂g/∂x)Tv = f′(x)T

Jacobian,
matrix[a.k.a. “implicit-function theorem”]

12

https://en.wikipedia.org/wiki/Implicit_function_theorem

You need to understand adjoint methods even if you use AD

● Helps understand when to use forward vs. reverse mode!

● Many physical models call large software packages written over decades in
various languages, and cannot be differentiated automatically by AD

○ You often just need to supply a “vector–Jacobian product” yTdx for physics, or even just part
of the physics, and then AD will differentiate the rest and apply the chain rule for you

● Often models involve approximate calculations, but AD tools don’t know
this & spend extra effort trying to differentiate the error in your approximation

○ If you solve for x by an iterative method (e.g. Newton), it is inefficient for AD to
backpropagate through the iteration … instead, you want take derivative of the underlying
equation g(p,x) = 0

○ For discretized physics (e.g. a finite-element methods), it is often more efficient (and
sufficiently accurate) to apply adjoint method to continuous physics
(“differentiate-then-discretize”)

13

MIT OpenCourseWare
https://ocw.mit.edu

18.S096 Matrix Calculus for Machine Learning and Beyond
Independent Activities Period (IAP) 2023

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/terms
https://ocw.mit.edu

	Blank Page

