Lecture # 20

CO₂ CAPTURE and STORAGE Mostly NG but with some Coal

Ahmed Ghoniem April 15, 2020

CO₂ reduction and improved efficiency CO₂ Capture Schemes CO₂ Capture Enabled Cycles CO₂ Sequestration (a) Ahmed F. Ghoniem

COP21

© IEA. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/fairuse</u>.

- New policies scenario: takes into account the policies and implementing measures affecting energy markets that had been adopted as of mid-2015 (as well as the energy-related components of climate pledges in the run-up to COP21)
- 450 scenario: depicts a pathway to the 2° C climate goal that can be achieved by fostering technologies that are close to becoming available at commercial scale.

Source: IEA world energy outlook 2015, P55

Energy-related CO₂ emission's reduction

© IEA. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/fairuse.

Estimated (in 2019) Levelized Cost of Electricity Generation Plants in 2023

Image courtesy of U.S. Energy Information Administration.

Proposed CO₂ emissions Regulations on Coal and NG

Coal plant at 35% efficiency, 1 mole CO_2 /mole of coal. Take 32 MJ/kg as coal heating value, plant produces (0.35 x $32 \times 12 / 44$) = 3.05 MJe/kgCO₂ or ~ $1,180 \text{ kg CO}_2/\text{MWhe}$. (proposed 1100 lb/MWhe)

NG plant at 55% efficiency, 1 mole CO_2 /mole CH_4 , with 45 MJ/kg NG heating value, generates (0.55 x 45 x 16 $(44) = 9 \text{ MJe/kgCO}_{2}$ or ~ 400 kgCO₂/MWhe. (proposed 1000 lb/MWhe)

Coal can not meet these without CCS ... Petra Nova!

© EPRI. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/fairuse.

Efficiency improvements reduce CO_2 emissions, with limits

Advanced Coal Power Systems with CO2 Capture ..., EPRI Report, 1016877, Sept 2008 5

Approaches for CO₂ capture (shown for coal used in steam cycle plants)

Courtesy Elsevier, Inc., http://www.sciencedirect.com. Used with permission.

System level analysis for NG (ASPEN BASED ANALYSIS)

CLC: one of the most Performance efficient gap 51% 50% 50% 48% 47% 47% 45% Chemical Oxy-fuel Oxy-fuel No CO₂ Pre-Post-Pre-Oxy-fuel looping(CLC (AZEP) combustion combustion (CC) combustion (WC) capture (CC) (MSR) (ATR) (amine)

Efficiency for different CO₂ capture technologies

57%

NG OXY-COMBUSTION CAPTURE SCHEME

Oxyfuel combustion. An air separation unit is used. Estimated efficiency penalty for syngas and NG are 5-12% points and 6-9% points, respectively. This amounts to increasing the fuel use by 24-27 % and 22-28 %. Broken line for a PC plant.

NG Oxy-combustion Combined cycle

Courtesy Elsevier, Inc., <u>http://www.sciencedirect.com</u>. Used with permission.

- Working Fluid: Mainly CO₂ (78%)
- CO₂ is recycled back to the combustor in order to moderate temperatures (93%)
- Net Efficiency: 45.9%
- 100 MW_e SCOC-CC demonstration plant, partnership of Siemens, Nebb Engineering, SINTEF & Lund University.

Courtesy Elsevier, Inc., <u>http://www.sciencedirect.com</u>. Used with permission.

Chakroun, N. W. and Ghoniem, A.F., *Int. J. Greenhouse Control*, 36 (2015) 1-12. Chakroun, N.W. and Ghoniem, A.F., *Int. J. Greenhouse Control*, 41 (2015) 163-173.

NG Oxy-Combustion Water cycle

Courtesy Elsevier, Inc., http://www.sciencedirect.com. Used with permission.

- Working Fluid: Mainly H₂O (94%)
- Liquid water is recycled to the combustor to moderate temperatures (83%)
- Net Efficiency: 41.4%
- This cycle has been implemented since 2005 by Clean Energy Systems (CES) in a 5MW test plant in Kimberlina, CA (world's first zero emission power plant)

Courtesy Elsevier, Inc., <u>http://www.sciencedirect.com</u>. Used with permission.

Oxygen Penalty

			SCOCC-CC		Water Cycle		Graz Cycle	
Working Fluid								
Composition (% vol.)			13%		94%			
Operating P (bar)					100			
Efficiency Ranges					40-49%			
Cycle Power Breakdown (% heat	Turbine				62%			
	Compressors, Pumps				2.2%			
	ASU				9.1%			
input	CO ₂ Compression				6.1%			
Turbine Technologies		A	New designs of current gas turbine machinery needed, due to unusual working fluid (CO ₂ &H ₂ O) and high T's	>	Steam turbine technologies available for HPT and LPT, from CES, for this cycle up to certain temperatures	•	Needs development of advanced turbine technology, for HTT, due to unusual working fluid (H ₂ O & CO ₂) & high T's	
Cycle Implementation		AA	Cycle not been implemented in real life but layout of cycle is similar to CC's so modifications may be practical A new oxy-fuel power plant w/ supercritical CO ₂ cycle is being developed by NET Power and a test plant should be completed by 2015	 Cycle has been built and implemented in real-life by CES at the Kimberlina Power Plant 		Cycle not been implemented yet b/c of complexity & unusual working fluid makes it economically unviable (so far) & needs new turbo-machinery design		

11

MIEC MEMBRANES (ITM) FOR GAS SEPARATION AND FOR OXY-COMBUSTION

- At intermediate T and high Δp_{O2} , ITMs produces high purity O_2 at reduced energy penalty
- Use <u>reactive sweep gas</u> to maintain low p"₀₂ and perform air separation and oxy-combustion in same unt

ITM based ASU (MSRU)/Syngas Production

- Large penalty in ASU technology
 - Cryogenic: $0.36 \, kWh_{el}/m^3 \, STP \, O_2$
 - Small PSA ~ 0.9 $kWh_{el}/m^3 STP O_2$
- Ion Transport Membranes (ITM):
 - □Oxygen purity: near 100%

 $\Box O_2$ separation/reaction combined in a single unit

Energy ~ 0.2 $kWh_{el}/m^3 STP O_2$ (Fraunhofer IKTS)

In our Labs, we have fabricating some of the best performing pervoskite membranes (LCF, LSCF, BZF, LSCo, LSCrCo, including biphasic and bilayer, novel morphology, etc. for different applications)

MITMECHE

ITM stacks by Air Products

OTM Syngas module by Praxair

Fraunhofer Institute, $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-\delta}$, uses tubular membranes, heat recovery to achieve 0.14 kWh/kg_O₂

Chemical Looping for Oxy-combustion

Comparison of multi-stage combined cycle designs. The solid circle on the top right-hand corner is for the combined cycle without CCS. CLC-CC with no reheat, 1 or 2 reheat. CLC-CC(r) is the CLC combined cycle with FR flue gas recuperation (no reheat and a single reheat); CLC-CC(s) is the CLC combined cycle with FR flue gas powering a bottom steam cycle. The TIT plays a very important role in determining the efficiency

© ACS Publications. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/fairuse.

CHEMICAL LOOPING COMBUSTION USING

Zhao, Z.L., Chen, T.J., and Ghoniem, A.F., Energy & Fuels, 2013.

PRE-COMBUSTION CO₂ CAPTURE, NGCC or IGCC

CO2 pre-combustion capture. Reformed fuel is shifted and CO₂. Estimated efficiency penalty for syngas and NG are 7-13% points and 4-11% points, respectively. Given current efficiencies of coal and NG plants, this amounts to increasing the fuel use by 14-25 % and 16-28 %, respectively.

Integrated Gasification Combined Cycle Coal Plants

Gasifier Types and the exit gas temperature

GCU: Gas Cleanup Unit AGR: Acid Gas Removal to separate CO2 © Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/fairuse</u>.

TEMPA ELECTRIC POLK IGCC POWER PLANT

250 MW, 35.3 % efficiency, 2500 TPD coal, 200 TPD sulfuric acid, built 1996, \$600M

Why add oxygen in gasification ???

steam gasification: $C + H_2O \rightarrow CO + H_2$ is endothermic $\Delta \hat{h}_r = 118$ MJ/kgmol C (1) partial oxidation: $C + \frac{1}{2} O_2 \rightarrow CO$ is exothermic $\Delta \hat{h}_r = -123$ MJ/kgmol C (2) Add (1)+(2) makes the gasification nearly autothermal: $2C + \frac{1}{2} O_2 + H_2O \rightarrow 2CO + H_2$ $\Delta \hat{h}_r = -5$ MJ/2 kgmol C \Rightarrow cold gas efficiency: chemical energy in syngas/chemical energy in coal is ~100% (practical values are lower becasue of heat losses)

GLOBAL CCS FACILITIES UPDATE

LARGE SCALE CCS FACILITIES IN OPERATION & CONSTRUCTION LARGE SCALE CCS FACILITIES IN ADVANCED DEVELOPMENT

IN ADVANCED DEVELOPMENT

LARGE SCALE - >400,000 TONNES OF CO:

- PILOT & DEMOSTRATION SCALE FACILITY
 IN OPERATION & CONSTRUCTION
 PILOT & DEMOSTRATION SCALE FACILITY
 IN ADVANCED DEVELOPMENT
- PILOT & DEMOSTRATION SCALE
 FACILITY COMPLETED
- TEST CENTRE

© Global Carbon Capture and Storage Institute Ltd. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/fairuse</u>.

https://www.globalccsinstitute.com/wpcontent/uploads/2019/12/GCC_GLOBAL_STATUS_REPORT_2019.pdf

LARGE SCALE CCS FACILITIES IN OPERATION

© Global Carbon Capture and Storage Institute Ltd. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/fairuse.

NO.	TITLE	STATUS	COUNTRY	OPERATION DATE	INDUSTRY	CAPTURE CAPACITY (Mtpa)	CAPTURE	STORAGE TYPE
1	GORGON CARDON DIOXIDE INJECTION	Operating	Antonia	9104	Natural Cas Processing	34-40	todustrial seperation	Dedicated Geological Storage
2	JILIN OIL FIELD CO-EOR	Operating	China	8104	Natural Gas	<u>مة</u>	Industrial separation	Enhanced Oil Recovery
3	LLINOIS INDUSTRIAL CARBON CAPTURE AND STORAGE	Operating	United States of America	5017	Ethanol Production	1	industrial separation	Dedicated Geological Shorage
4	PETRA NOVA CARBON CAPTURE	Operating	United States of America	8017	Power Creater in	Lą	Post- combustion capture	Enhanced Oil Recovery
5	ABU DHABI CCS (PHASE 1 BEDIG EMIRATES STEEL DIDUSTRIES)	Operating	United Arab Emirates	òlot	tron and Steel Production	ما	Industrial separation	Enhanced Oil Recovery
6	QUEST	Operating	Canada	2015	Hydrogen Production for Oil Refining	1	industrial separation	Dedicated Garlogical Shorage
7	UTHMANITAH COJ-EOR DEMONSTRATION	Operating	Saudi Arahia	1015	Natural Cas Processing	al	indumial separation	Enhanced Oil Recovery
8	BOUNDARY DAM CCS	Operating	Canada	2014	Power Generation	1	Post- combustion capture	Enhanced Oil Recovery
9	PETROBRAS SANTOS BASIN PRE-SALT OIL FIELD CCS	Operating	Brazil	2013	Natural Gas Processing	3	industrial separation	Enhanced Oil Recovery
10	COFFETVILLE GASIFICATION PLANT	Operating	United States of America	£013	Fortiliser Production	x	industrial suppration	Enhanced Oil Recovery
11	AIR PRODUCTS STEAM METHANE REFORMER	Operating	United States of America	2013	Hydrogen Production for Oil Refining	1	industrial separation	Enhanced Oil Recovery
12	LOST CABIN GAS PLANT	Operating	United States of America	2013	Natural Cas Proceeding	<u>a.9</u>	industrial separation	Enhanced Oil Recovery
13	CENTURY PLANT	Operating	United States of America	0104	Natural Cas Proceeding	8.4 Industrial separation		Enhanced Oil Recovery
14	SN@HVIT CO3 STORAGE	Operating	Norway	8005	Natural Gas Processing	0.7 Industrial separation		Dedicated Geological Storage
15	GREAT PLAINS SYNFUELS PLANT AND WEYBURN-MIDALE	Openting	United States of America	0000	Synthetic Natural Cas	3	todutial separation	Enhanced Oil Recovery
16	SLEIPHER CO3 STORAGE	Operating	Norway	1996	Natural Gas Proceeding	1	Industrial aspecation	Dedicated Geological Storage
17	SHUTE CREEK GAS PROCESSING PLANT	Operating	United Status of America	1986	Natural Cas Presenting	7	Industrial separation	Enhanced Oil Recovery
18		Operating	United Status of America	1982	Fertilian Production	0.7	Industrial separation	Enhanced Oil Recovery
19	TERRELL MATURAL GAS PROCESSING PLANT (PORMERLY VAL VERDE NATURAL GAS PLANTS)	Operating	United Status of America	1972	Natural Gas Proceeding	0.4-05	Industrial separation	Enhanced Oil Recovery

LARGE SCALE CCS FACILITIES IN CONSTRUCTION, ADVANCED AND EARLY DEVELOPMENT

NO.	ΠΠLE	STATUS	COUNTRY	OFERATION DATE	DEDUSTRY	CAPTURE CAPACITY (Mitpo)	CAPTURE	STORAGE TYPE
20	ALBERTA CARBON TRUNK LINE ("ACTL") WITH NORTH WEST REDWATER PARTNERSHIP'S STURGEON REFINERY CO ₃ STREAM	In Contruction	Canada	2010	Hydrogen Production for Oil Refiring	11-14	tuðustrial sepuration	Enhanced Oil Recovery
21	ALBERTA CARBON TRUNK LINE (ACTL') WITH AGRIUM CO3 STREAM	in Camputin	Canada	5010	Fertiliser Production	۵.3- مرة	Industrial separation	Enhanced Oil Recovery
22	SINOPEC OILU PETROCHEMICAL CCS	in Conducido	Chima	1010	Chemical Production	0.40 Industrial separation		Enhanced Oil Becovery
23	YANCHANG INTEGRATED CARBON CAPTURE AND STORAGE DEMONSTRATION	in Construction	China	1010 - 2011	Chamical Production	a.di Industrial separation		Enhanced Oil Bocovery
24	WABASH CO SEQUESTRATION	Advanced development	United States of America	1011	Pertiling production	1.5-1.75 Industrial Separation		Dedicated Cechapical Storage
25	PORT OF ROTTERDAM CCUS BACKBONE INITIATIVE (PORTHDS)	Advanced development	Netherbards	2023	Various	دمع مع-مع مع-مع		Dedicated Geological Storage
26	NORWAY FULL CHAIN CCS	Advanced development	Narway	2023-2024	Coment production and waste-to-energy	olo	Various	Duficated Ceological Strage
27	LAKE CHARLES METHANOL	Advanced development	Utilitad States of America	2014	Chemical production	4.50 Industrial separation		Enhanced oil recovery
28	ABU DHABI CCS PHASE 2 - NATURAL GAS PROCESSING PLANT	Advanced development	United Arab Emirales	2015	Natural gas processing	1.9 - 2.3 Indestrial separation		Enhanced Oil Bacovery
29	DRY FORK INTEGRATED COMMERCIAL CCS	Advanced development	United States of America	2025	Power generation	ممو	Post- cambustion capture	Dedicated Caulogical Storage or Enhanced Oil Recovery
30	CARBONSAFE ILLINOIS - MACON COUNTY	Advanced development	United States of America	2025	Power gameration and athanol production	مر- مع	Post- combusion control and eductrial separation	Dedicated Gaological Storage and Enhanced Oil Racovery
31	PROJECT TUNDRA	Advanced development	United States of America	1015 - 2026	Power generation	64-14	Post- cambustion capture	Dedicated Geological Storage or Enhanced Oil Recovery
32	INTEGRATED MID-CONTINENT STACKED CARBON STORAGE HUB	Advanced development	United States of America	3025 - 2035	Ethanol production, power generation and/or refinery	Lyö Vanious		Dedicated Geological Storage and Enhanced Oil Recovery
33	CARBONNET	Advanced development	Australia	\$050	Under evaluation	3.000 Under Evaluation		Dedicated Gashnjical Storage
34	OXY AND WHITE ENERGY ETHANOL EOR FACELITY	Early development	United States of America	3021	Ethanol production	06-07	indumial separation	Enhanced Oil Recovery
35	SINOPEC EASTERN CHINA CCS	Early development	China	2021	Fortiliser production	0.50	indumial separation	Enhanced oil recovery
36	HYDROGER 2 MAGNUM (H2M)	Early	Netherlands	3024	Power Congration	200	Under	Dedicated Configureal Storage

© Global Carbon Capture and Storage Institute Ltd. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/fairuse.

https://www.globalccsinstitute.com/wp-

content/uploads/2019/12/GCC_GLOBAL_STATUS_REPORT_2019.pdf

Oil recovery is under: Field pressure (primary): 15% Water floods (secondary): 30 % CO2 flood (tertiary): 15%

© Ahmed F. Ghoniem

Chemical scrubbing of CO_2 from flue gases has already been demonstrated.

During 82-86, an aqueous solution of MEA was used in: Lubbock Power plant, Texas, NG was fired in a 50 MW plant, producing near 1000 t/d of CO_2 , and in a coal-steam generator in Carlsbad NM producing 113 t/d. In both cases, CO_2 was used for enhanced oil recovery (EOR) in nearby fields.

1991, CO_2 scrubbing using 15-20% MEA solutions in the 300 MW Shady Point Combined Heat and Power Plant in Oklahoma has been producing nearly 400 t/d CO_2 , which is used in the food industry and in EOR.

A similar operation is done in a Botswana plant burning coal.

Norway Sleipner Vest gas field separates CO_2 from the recovered natural gas to reduce CO_2 concentration in the produced gas from 95% to 2.5%. The separated CO_2 is then injected back into a 250 m deep aquifer located 800 m below the ocean surface.

MIT OpenCourseWare https://ocw.mit.edu/

2.60J Fundamentals of Advanced Energy Conversion Spring 2020

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.