
  

  

 

 
 

 
 

    

Lecture # 4 

Liquefaction and Gas Storage 

Ahmed Ghoniem 

February 12, 2020 

1. Ideal liquefaction work. 
2. Liquefaction work for hydrogen and storage 
3. Losses in actual processes. 
4. Air liquefaction and large scale storage. 
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Liquefaction Work, Ideal and �Actual� 

• Some gas separation processes require cooling and liquefaction. 
• Highest �storage density� for Hydrogen is in the liquid form. 
• Liquefied natural gas is becoming important for transporting it. 
• For CCS, CO2 must be in liquid form for injection. 
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Gravimetric Energy Density 
MJ/kg system 

Lithium rechargeable Batteries: 
0.54 MJ/kg Or 150 Wh/kg 
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Minimum Liquefaction Work 
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The critical point of hydrogen is 33.3 K, 1.3 MPa 

Calculate the ideal liquefaction work for hydrogen starting at1 atm and 298 K: 
s1 = 53.436kJ/kgK , h1 = 3929.6 kJ/kg , 

The liquid hydrogen temperature at 1 atm is 20 K.  
s3 = −0.02 kJ/kgK , h3 = −0.44 kJ/kg 

wmin = 11.870 MJ/kg H2. 
Actual values ~ 4-10 times, 40-110 MJ/kg H2
(low second law efficiency). 

The lower heating value LHV of hydrogen is 120.9 MJ/kg 
Liquefaction work is 30-100% of the LHV (or more) 

Useful work produced by an engine running at 40% efficiency is ~ 50 MJ/kg 
The numbers do not look good! 
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Minimum Liquefaction Work ŵmin = − ⎡⎣(h3 − h1) − T1 (s3 − s1)⎤⎦ 

Realization of the ideal Linde Liquefaction process: 
All processes must be reversible: isothermal heat exchange and isentropic work transfer, 
thus Isothermal compression and isentropic expansion 
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Storage and Packaging of Hydrogen 
for an ideal gas, the min work is 

wisothermal = ℜTo ln( p2 / p1 )Plant size determines the quality of the 
equipment and integration of processes ⎛ k−1 ⎞

kwisentropic = cpTo ⎝⎜ ( p2 / p1 ) − 1
⎠⎟ 

© EFCF. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/fairuse. 

The Future of the Hydrogen Economy, Bright or Bleak� Eliasson, and Bossel, 2003. 
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Compressed/Liquid H2 Storage 

Compressed H2 Storage 
• Composite tanks are available at 5,000 psi (350 bar) 
• Prototype 10,000 psi tanks demonstrated 

Liquid H2 Storage 
• BMW has demonstrated automotive liquid H2 storage 
• Liquefying H2 requires substantial energy (40% of total 

energy content of H2 fuel) 
• Boil-off is an issue for non-pressurized insulated tanks 
• Pressurized cryogenic tanks are being developed by LLNL. 

Both images © Source unknown. All rights reserved. This content is excluded from 
our Creative Commons license. For more information, see https://ocw.mit.edu/fairuse. 

For compressed and liquid storage, packaging volume is still a concern. 

JoAnn Milliken, DOE/EERE, via M. Dresselhaus web.mit.edu/mrschapter/ 
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Leap forward ~ 10 years, Toyota Mirai 

Fuel cell-powered 113 kW (152 hp) 
Battery 1.6 kWh Nickel-metal hydride 
Range 502 km (312 mi) (EPA) 

This image is in the public domain. 
 

Nickel-metal hydride 
battery (1.6 kWh) Electric 

(traction) Fuel cell stack 
motor (115 kW) 

H2 storage tanks @ 700 bar 
(70 MPa or 10,000 psi) for 5 
kg of H2. 

© Source unknown. All rights reserved. This content is excluded from our 
Creative Commons license. For more information, see https://ocw.mit.edu/fairuse.
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   Natural gas is liquefied for its transportation 

(Critical point of methane is 191.1 K and 4.74 MPa) 

Liquefy methane between p1 = 1 atm, T1 = 273 0K, and pf = 2.6 atm and Tf = 110 0K 
wmin = − ⎡⎣(hf − h1 ) − T0 (s f − s1 )⎤⎦ 
From NIST web site, the thermodynamic properties of methane: 
h1 = 854.5 kJ/kg s1 = 6.48 kJ/kgK 
hf = -5.55 kJ/kg sf = -0.053 kJ/kgK 

wmin = − ⎡⎣(−5.55 − 854.5) − 273(−0.053 − 6.48)⎤⎦ = −923.46 kJ/kgmethane 

wactual If the second law efficiency of 25%, = −3693.84 kJ/kgmethane 

LHV of methane is 50 MJ/kg 
Methane engine running at 40% efficiency produces 20 MJ/kg 
Number look a lot better! 
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Linde-Hampson Process 
Replace (expensive) isentropic expansion with a throttle valve 

Keep isothermal compression, but 
use recuperation and (constant 

enthalpy) throttle valve, also 
called Joule-Thompson valve 

energy balance over (broken line) CV 

m5 h1 − h2m2h2 = m5h5 + (m2 − m5 )h1, → Yl = = 
m2 h1 − h5 

isothermal compression: w = T1 (s2 − s1 ) − (h2 − h1 ) 
w h1 − h5wl = = ⎡⎣T1 (s2 − s1 ) − (h2 − h1 )⎤⎦Yl h1 − h2 
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   Liquid nitrogen is used extensively … 

the critical point of nitrogen is 126.2 K and 3.4 MPa. 

The properties of nitrogen at (STP) 1 atm and 298 K (state 1) : h1 = 311.1 kJ/kg and s1 = 6.84 kJ/kg.K. 
the properties of nitrogen at 1 atm at saturated liquid (state 3) : h3 = −122.1 kJ/kg, s3 = 2.83 kJ/kg.K and T3 = 77 K. 
ideal liquefaction work: wmin = -769.4 kJ/kg N 

Linde-Hampson using: p2 = 20 MPa: h2 = 279.0 kJ/kg and s2 = 5.16 kJ/kg.K 

w = - 6354.3 kJ/kg N 

Second law efficiency of Linde Hampson, it or figure of merit, 
769.4/6354.3 = 0.121 (very low). 
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Actual Linde-Hampson plants have even lower efficiency because they may use adiabatic 

instead of isothermal compression 

Multi stage compression with intercooling is used to approach the isothermal limit. 

An expander can also be used to recover some of the expansion energy 

Improvements make sense only in larger plants when larger capital costs are justifiable. 

The T-s diagram of the adiabatic-compression 

liquefaction cycle shown above, utilizing a 

cooler to reduce the gas temperature between 

2 and 3, and a regenerator to further reduce 

the gas temperature between 3 and 4 (while 

heating up the separated vapor between 7 

and 8). 
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Using H2 to power a fuel cell for Helios 

Image courtesy of NASA.
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Images courtesy of NASA. 
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Liquid Air Energy Storage 
Good material in Chris Nutty and Scott Seo 

2019 student term report 
The Claude cycle, etc. 
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