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Objectives
Experience the glass transition through observing temperature dependence of viscosity


Observe change in glass transition effected by changes in glass composition

Relate thermal, spectroscopic and diffraction features to glass structure


Tasks 
Draw sodium borate glass fibers from prepared melts


Measure speed of sound in borate glass fibers using ultrasonic pulse transit

Determine load-displacement curves for borate glass fibers in 3-point bend tests


Deduce critical flaw size and fracture toughness of borate glass fibers


Materials 
Sodium carbonate powder (Na2CO3), 250g


Boric acid powder (H3BO3), 500g

8 Alumina crucibles, 50ml


8 Silica glass rods, 4-mm diameter


Introduction 

A GLASS is, formally, a solid that solidifies without a well-defined melting point— 
defined as a singular temperature at which there occurs a discontinuous change in a
physical property, for example specific volume, during transition between a liquid state
and its corresponding solid state—but instead exhibits a continuous change in that 
property over a range of temperature. Glasses tend to inherit their atomic-scale structures 
from those of the liquids from which they evolve by cooling, and their structural 
arrangements are therefore necessarily less-ordered than those of corresponding 
crystalline arrangements. Such glassy arrangements are often termed amorphous, though 
formally again what is meant by this term is lack of the long-range translational and 
rotational regularity that characterize crystalline arrangements. All “amorphous” atom 
arrangements do not necessarily exhibit a formal glass transition, though many do. Good 
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examples are 1) vitreous silica [SiO2] (also known as “fused quartz” because in its 
production crystalline quartz is melted, then cooled rapidly enough to ensure that
crystallization does not take place); 2) soda-lime glass (“window glass”) formed by 
dissolving sodium and calcium oxides into a silica melt and cooling; 3) alumino
borosilicate labware glasses like Pyrex. 

Chemical bonding of atoms—whether ionic, covalent or metallic in character— 
governs the coordination of other atoms around any given atom in a solid. For metallic 
and ionic solids, atom or ion sizes are a principal factor in determining coordination,
which tends to be high (usually between 6 and 12). The orbital geometries and directivity 
of covalent bonds occasion rather lower coordination (typically 2 to 4). The preferred
coordination is clearly critical in deciding the crystal structure adopted in crystalline
solids. The coordination established by chemical bonding in less regular atomic 
arrangements—for example, glasses—is often similar or identical to that in crystals and 
is equally important in deciding the structure of non-crystalline solids. The connectivity
of coordinated groups of atoms in turn governs many mechanical responses of the non
crystalline solid. This experiment explores the consequences—for the propagation of
mechanical vibrations, for elastic deformation response, and for fracture strength—of 
changes in the nature of the network bonding and structure in alkali borate glasses.

Lacking the “crutch of periodicity” that enables even complicated inorganic
crystal structures to be described by a few, or a few tens of, atoms in a uniform unit cell,
glass structures resist description and are still partly a matter for speculation. One useful
approach, first addressed by the noted American crystal chemist William H. Zachariasen 
in 1932 in the only paper he published on glass structure,1 starts with connectivity— 
which atoms are likely to be connected to which other atoms—and seeks empirically to 
construct a network that resists shear (thus distinguishing it from a liquid), lacks long-
range translational and orientational regularity (thus distinguishing it from a crystalline
arrangement), and can be extended indefinitely. Zachariasen chose as his paradigm 
vitreous silica, a three-dimensional oxide network glass, in which silicon atoms are 
invariably surrounded by four oxygen atoms, forming [SiO4] tetrahedral units that
connect to each other by sharing common oxygen atoms at each of their four vertices.
But in the simpler heuristic depiction he chose to illustrate, Zachariasen used [AO3]
equilateral triangular units, sharing each of their three vertex oxygens with other 
triangular units in two dimensions.

It is, of course, trivial to extend a network of corner-sharing triangles indefinitely 
in two dimensions if the triangles are oriented identically to form a hexagonal crystalline
network. But Zachariasen found that he could extend such a network seemingly 
indefinitely even if the triangles were randomly rotated with respect to each other 
(random A-O-A angle). His model, later coined the “continuous random network” by 
MIT X-ray crystallographer and physics professor Bertram E. Warren2 (MIT SB ’24, SM 
’25, DSc ’29) who studied glass structure by X-ray diffraction in the 1950’s, has become 
the standard textbook illustration for network glass structure (even though the model was
not proven extendable to three dimensions until the 1990’s). 

1W. H. Zachariasen, J. Amer. Chem. Soc. 54 (1932) 3841-3851. 
2B. E. Warren, J. Amer. Ceram. Soc. 17 (1934) 249. 
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Topology and Rigidity 

A more rigorous approach to description of glass structure employs the 
mathematics of network topology3 (much explored in the last two decades because of the
importance of pervasive computer networks) and analyzes continuous closed paths, 
called rings, in a network of connected polytopes (geometrical coordination units, like the 
[SiO4] tetrahedra or [AO3] triangles of the last two examples). Moreover, a topological 
approach can explain why solids form non-crystalline structures at all. The reason is 
related to rigidity theory4, a formal exploration of which was first undertaken by James 
Clerk Maxwell5, the mid-19th century Cambridge University physicist whose compact
formulation of the laws governing electromagnetic phenomena are now known as 
Maxwell’s relations. Maxwell discovered that rigid connected structures, like a bridge
truss, derive their stability from the fact that the degrees of freedom at the connection
points of the structure (3 degrees of freedom in three-dimensions) are exceeded by the
constraints imposed on that freedom by the connections to other parts of the structure.
Ceramists Alfred R. Cooper (MIT Ph.D. ’60 and former Course III professor) and his
former student Prabat K. Gupta (now a professor at Ohio State University) codified these
constraints for arbitrary polytopes (rods, triangles, tetrahedral, octahedral, cubes…) and 
connectivity motifs (vertex-sharing, edge-sharing, face-sharing) and established a 
parameter called structural freedom f to describe the excess of freedoms over constraints, 
which was found to correlate with glass-forming ability6 and amorphizability4. Their 
analysis yields 

f = d – C{δ – [δ(δ+1)/2V]} – (d-1)(Y/2) – [(p-1)d – (2p-3)](Z/p) (1) 

where d is dimension of the stucture (1-, 2- or 3-dimensional), δ is the dimension of the 
polytope, C (the “connectivity”) is the number of polytopes with V vertices meeting at a 
vertex, Y is the fraction of vertices which participate in sharing of edges (defined by 2
adjacent vertices), and Z is the fraction of vertices that participate in sharing of p-sided 
faces. As an instructive example, MgO (with the rocksalt structure) is comprised of 
[MgO6] octahedra sharing each of their six edges with five other adjacent octahedra ; the 
parameters 

3L. W. Hobbs, C. E. Jesurum, V. Pulim and B. Berger, “Local topology of silica networks,” Philos. Mag. A 
78 (1998) 679-711. L. W. Hobbs, C. Esther Jesurum and Bonnie Berger, “The topology of silica 
networks,” Chapter 1 in: Structure and Imperfections in Amorphous and Crystalline Silica, ed. J.-P. 
Duraud, R. A. B. Devine and E. Dooryhee (John Wiley & Sons, London, 2000) pp. 1-47. Linn W. Hobbs 
and Xianglong Yuan, “Topology and Topological Disorder in Silica,” in: Defects in SiO2 and Related 
Dielectrics: Science and Technology,” ed. G. Pacchioni, L. Skuja and D. L. Griscom (Kluwer, Dordrecht, 
Netherlands, 2000) pp. 37-71. 

4Linn W. Hobbs, C. Esther Jesurum and Bonnie Berger, “Rigidity constraints in the amorphization of 
singly- and multiply-polytopic structures,” in: Rigidity Theory and Applications, ed. P. M. Duxbury and M. 
F. Thorpe (Plenum Press, New York, 1999) 191-216. 

5J. C. Maxwell, Philos. Mag. 27 (1864) 294. 

6P. K. Gupta and A. R. Cooper, J. Non-Crystalline Solids 123 (1990) 14. P. K. Gupta, J. Amer. Ceram. 
Soc. 76 (1993) 1088. 
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for (1) are (d = 3, δ = 3, V = 6, C = 6, Y = 1, Z = 0) and yield f = –10. The large negative 
value of f means that MgO is extraordinarily overconstrained and proves virtually 
impossible to amorphize: it always solidifies or self-assembles into the crystalline state 
and will retain that structure without rearrangement even when a large fraction of the
interionic connections are missing. By contrast, SiO2 comprises [SiO4] tetrahedra sharing 
each of their four vertices with another tetrahedron (d = 3, δ = 3, V = 4, C = 2, Y = 0, Z = 
0) and yields f = 0. SiO2 structures are therefore only marginally constrained, and 
breaking only a small number of bonds renders the structure floppy and able to rearrange
and rebond into many alternative arrangements, most of them non-crystalline, with only 
small differences in internal energy from those of crystalline silica structures. Silica, 
with f = 0, is the archetypal glass former. 

Borate Glasses 

SiO2 forms [SiO4] tetrahedra because the single filled 3s and two half-filled 3p Si 
orbitals (containing a total of 4 electrons) hybridize to form four “sp3 bonds,” each 
containing a single unpaired electron, pointing to the corners of a tetrahedron at mutual
angles of about 107˚. [The silicon atom (atomic number Z = 14) electronic structure is: 
1s2 2s2 2p6 3s2 3px

1 3py
1.] Each of the four “sp3 bonds” reaches out to one of the two half-

filled oxygen 2p orbitals in a neighboring oxygen atom, each containing a single electron 
[oxygen (Z = 8) electronic structure: 1s2 2s2 2pz

2 2px
1 2py

1] to form an Si-O “bond” 
containing a pair of electrons. Thus, each Si is tetrahedrally coordinated by four O atoms 
(in [SiO4] tetrahedral polytopes) and each O (the other half-filled O 2p orbital reaching 
out to a second Si) is coordinated by two Si atoms, with an Si-O-Si angle that can take on 
values between about 120˚ and 180˚. Carbon (Z = 6, electronic structure: 1s2 2s2 2px

1 

2pz
1) analogously hybridizes the single filled 2s and two half-filled 2p orbitals to form the 

strong tetrahedral “sp3” bonds in diamond; but it can also hybridize the 2s2 orbital 
electrons with a single electron from one 2p orbital to form three “sp2” bonds at 120˚ 
holding together the planar hexagonal layers of graphite, the remaining 2pz orbital 
electron available to effect weaker interlayer bonding. 

Boron (atomic number Z = 5, electronic structure: 1s2 2s2 2px
1) can perform the 

same trick. Hybridization of the filled 2s and half-filled single 2px orbital yields three 
“sp2” bonds at 120˚, so that boron combines with oxygen as [BO3] triangular polytopes 
which share corner oxygens to form two-dimensional network sheets with composition 
B2O3 (with no O 2p orbital electron left over to effect bonding between sheets, as in 
graphite). This structure is exactly the two-dimensional Zachariasen model, for which d 
= 2, δ = 2, V = 3, C = 2 and f = 0. In three dimensions, d = 3, and structural freedom for 
B2O3 is increased to f = +1; thus, in the three-dimensional solid, a certain floppiness of
the network is expected, or at least it is not expected to exhibit a high stiffness. As 
expected, B2O3 is a facile glass former and is, in fact, difficult to retain in crystalline 
form. There is evidence that about 70% of the [BO3] triangles arrange themselves into 
[B3O6] super-structural units called boroxyl rings, each boroxyl unit comprising three 
triangles in a 3-ring. The superstructure units are connected to other [BO3] triangles or
other boroxyl rings through three common oxygens per unit, just as are [BO3] triangles, 
so the boroxyl units are just larger triangular polytopes, and the fundamental topology is 
not changed. 
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Because glasses undergoing a glass transition change continuously from a liquid 
(of low viscosity) to a solid (of effectively infinite viscosity) when cooled, the point of
“solidification” is defined operationally as when the viscosity reaches a critical value 
(taken as 1013 Pa s) at a temperature called the glass transition temperature (Tg). If an 
alkali (or alkaline earth) oxide, like Na2O is added to SiO2, it has been known for at least 
four millennia that the viscosity of silica glass is substantially reduced, so that it can be
poured or worked (viscosities of 103-107 Pa s) at temperatures as low as 700˚ C, easily 
accessible to ancient pyrotechnologies. This phenomenon is the basis of the soda-lime 
silicate glass compositions (16mol%Na2O-10mol%CaO-74mol%SiO2) still in common 
use today—for beer bottles and window glass, for example. The explanation is that the
large, highly ionic alkali or alkaline earth ions prefer to be coordinated by as many 
oxygen atoms as possible; this coordination can only be achieved if network Si-O bonds 
are broken, leaving some oxygens connected to the network through only one, not two
bonds (these are called “non-bridging oxygens,” or NBOs), each NBO being left with an 
electron in a “dangling” 2p orbital that can interact strongly with positively charged alkali
ions, which then distribute themselves in regions of locally high NBO density. In fact,
Na2O is readily soluble in SiO2 because Na ion goes from 4-fold coordination by oxygen 
in the anti-fluorite structure of Na2O to higher average oxygen coordination in the sodium 
silicate glass. The resulting structure is called a “modified random network” and is less
connected, exhibiting lowered viscosity and stiffness at a given temperature and a 
reduction of Tg from ~1250 ˚C in pure silica glass to ~600 ˚C in soda-lime silicate glass 
incorporating these two network modifier cations.

Soda can also be dissolved into B2O3, but the initial result is quite different: the 
glass stiffens and exhibits a minimum in the thermal expansion coefficient around 
16mol% Na2O, exactly the opposite of what happens with soda dissolved into silica. This 
is known as the “boron anomaly,” an explanation of which is that the addition of Na+ ions 
converts vertex-sharing [BO3] triangles to vertex-sharing [BO4] tetrahedra. On a formally 
“ionic” model, dissolution of soda into B2O3 can be represented as 

B2O3 
’’ • ×Na2O = 2NaB + 4BB + OO (2) 

•where ’ represents a negative charge, a positive charge, and × neutrality with respect to 
the usual electrostatic expectation at a given site. B3+ is in effect oxidized to a B4+ 

valence state, though on a covalent model this is not quite how it happens. Instead, an 
oxygen ion (electronic configuration: 1s2 2s2 2p6), introduced to the network and 
coordinated to a stabilizing near-neighbor Na+ ion, effectively contributes an electron to a 
second 2py orbital in each of two adjacent boron atoms, which in turn hybridize the filled 
2s2 and resulting half-filled 2px

1 and 2py
1 orbitals into four tetrahedral “sp3 bonds” 

extending out to four tetrahedrally coordinating oxygen atoms (each oxygen then has the
atom electronic configuration: 1s2 2s2 2pz

2 2px
1 2py

1). One mole of Na2O thus converts 
four moles of [BO3] triangles to [BO4] tetrahedra, and a triangular f = +1 network into a 
tetrahedral f = 0 network, with a net gain in rigidity. If no other network changes 
occurred, conversion would be theoretically complete for the composition 
0.5Na2O•B2O3—equivalent to composition Na2B4O7 (anhydrous borax) which, by 
analogy to Na-silicate glasses, should comprise a Na+-ion-stabilized fully tetrahedral 
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network). In reality, the [BO4] tetrahedral unit occurs in several intermediate 
configurations based on arrangements of [BO3] and [BO4] polytopes found in crystalline 
alkali borate structures7—e.g the [B3O7] triborate and [B5O10] pentaborate units each 
containing one [BO4] tetrahedron per unit, and the [B4O10] diborate unit containing two 
linked [BO4] tetrahedral per unit. The concentration of single [BO4] tetrahedra, however
accommodated, rises continuously with increasing alkali content up to about 30mol%8 

and then diminishes as the isolated tetrahedra are replaced in turn by diborate groups and 
a more extensive tetrahedral network at higher [BO4] density.9 (It turns out that the 
anomalous expansion coefficient minimum at 16mol% Na2O content may arise from an 
allied but distinguishable phenomenon of phase separation on a nanometer scale into 
alkali-rich and alkali-poor compositions.10) 

Sound and Strain 

The bonding constraints in a solid act as springs with a characteristic stiffness
because the interatomic forces act elastically until the bonds are ruptured. These atomic 
springs act in concert, so in general the more topologically overconstrained the structure
is for a given bond strength, the stiffer the structure. Just as a spring responds to an
applied force by extending or contracting, so a solid responds to an applied force by 
deforming. If the deformation is reversibly proportional to the applied force, the
response is termed linearly elastic. 

1. Linear elasticity.11 Consider a volume element located at some point in the
interior of a solid body, with a unit normal n associated with a unit surface area of the 
volume element. Suppose force F, with components Fi along three principal axes (i = 
1,2,3), acts on this volume element. The force can then be described by the equation 

F = σ n. (3) 

The elements of the force F are 
3 

Fi = ∑ σij nj (4) 
i=1 

where nj are the direction cosines (cosines of the angles n makes with each of the three 
principal axes) and σ is what is known as a symmetrical (σij = σji) second-rank tensor,
known as the stress tensor, with nine elements (i = 1-3, j = 1-3). For any surface 
element, the normal stress (force per unit area) is 

7J. Krogh-Moe, Acta Cryst. 18 (1965) 77; Phys. Chem. Glasses 6 (1965) 46.

8P. J. Bray and J. G. O’Keefe, Phys. Chem. Glasses 4 (1963) 37.

9C. M. Kuppinger and J. E. Shelby, J. Amer. Ceram. Soc. 68 (1985) 463.

10W. Vogel, Chemistry of Glass (American Ceramic Society, Columbus, OH, 1985), pp. 101-109.

11L. W. Hobbs, “Mechanical properties of refractory oxides,” in: Physics and Chemistry of Refractory

Oxides, ed. P. Thévenard (Sitjoff and Noordhof, Leiden, 1982). See also General Bibliography. 
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3 
σn = ∑ Fi ni . (5) 

i=1 

The resolved forces Fi cause atom displacements uj along axes xj. 
Defining eij ≡ ∂ui/∂xj, incremental displacements can be written as 

dui = eij dxj (6) 

for small displacements dui. The eij comprise the elements of a second-rank asymmetrical 
tensor e, called the inifinitesimal strain tensor, which is a measure of both rigid body 
rotation 

ωij = 1/2 (eij – eji) (7) 

and the pure strain (displacement per unit length) 

εij = 1/2 (eij + eji). (8) 

The strains εij comprise the elements of a symmetrical second-rank tensor ε , called the 
strain tensor. If the strain is referred to the principal axes, 

| ε11 0 0 | 
ε = | 0 ε22 0 | ; (9) 

| 0 0 ε33  

for uniaxial strain along axis x1, the strain tensor simplifies to ε = ε11 = e11 = ∂u1/∂x1 ≈ 
u/x1 for small displacements u << x1. 

For small strains in a body, the stress at any point is more or less linearly related
to the strain, because the interatomic force-separation relationship is sensibly linear. This 
linear elastic behavior is approximated macroscopically in most solids, though the
continuum approach can break down at the atomic level. Linear elastic behavior is just a 
generalized form of Hooke’s law, which can be written 

σij = ∑ ∑ cijkl εkl 
k l 

(10a) 

or, more compactly, 

σ = C ε (10b) 

where cijkl are the elastic stiffness constants forming elements of the stiffness matrix C. 
Multiplying (10a) by the reciprocal cijkl 

-1 produces the equivalent relation 
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εij =	 ∑ ∑ sijkl σkl (11) 
k l 

where sijkl = cijkl 
-1 are called the elastic compliances, which comprise the compliance 

matrix S. In their most general forms, C and S contain 81 terms each. Crystal 
symmetries, reflected in these matrices, dramatically reduce the number of elements; for 
a cubic crystal, for example, the elements are reduced to three constants, c11, c12 and c44. 
For an elastically isotropic crystal (properties the same in all directions), only two elastic
constants are required, since then 

c44 = 1/2 (c11 – c12) .	 (12) 

The same is true of an isotropic non-crystalline material, though the axial labels i,j can no 
longer be conveniently aligned along convenient crystalline directions, such as unit cell
edges; most glasses come under this rubric, since their average properties are the same in 
any direction. This fact enables the behavior of a linearly and isotropically elastic body 
to be entirely described by two more recognizable constants, Young’s modulus Y and 
Poisson’s ratio ν, with 

Y = 1/s11 
(13) 

ν = –s12/s11. 

For a solid defined by orthogonal axes (x1,x2,x3), Poisson’s ratio represents the ratio of 
perpendicular (radial to the axis) to axial strains induced, 

ν = -ε⊥ /ε||	 (14) 

(e.g. stretch a rod and it gets thinner, push on a rubber ball and it gets fatter); it is partially
a statement of volume conservation in a material of limited compressibility. Values of
Poisson’s ratio typically lie between 0.2 and 0.3, although some cellular solids (like cork) 
can have zero or even negative (!) Poisson’s ratios. For a uniaxially applied stress σ1
(where σ2 = σ3 = 0) in an isotropic solid, the resulting elastic strains parallel and 
perpendicular to x1 are 

ε1 = σ1 / Y 
(15) 

ε2 = ε3 = –ν ε1 = –ν σ1 / Y. 

Continuum elastic response of solid represents a uniform correlated motion of the
constituent atoms (all the atoms respond in the same way: for example, all the atoms
move closer together under hydrostatic compression). The are two cases of interest when 
atoms move less dependently of each other: when a displacement wave passes through 
the solid (sound, phonon propagation), and when atoms locally perform oscillatory 
motions with respect to each other in the absence of an external perturbation (e.g. thermal 
vibrations). 

-8



_____________ 

2. Sound propagation. Sound is a longitudinal mechanical pressure (P ≡ 
force/unit area) wave12 that can be approximated by propagation of a uniaxial stress 
pulse. For sound propagation in an (isotropic) liquid, necessarily contained by walls, the
relevant materials properties are the compressibility 

κ ≡ –V–1 ∂V/∂P = ρ –1 ∂ρ/∂P , (16) 

or its reciprocal, the bulk modulus B ≡ –V ∂P/∂V = 1/κ = ρ ∂P/∂ρ, and density ρ. The 
sound propagation velocity is given by 

vs = √ (B/ρ). (17) 

For an isotropic solid, where expansion or compression can take place perpendicular to
the propagation axis through the Poisson effect, the relevant materials are analogously
Young’s modulus and density, and the propagation velocity of an acoustical pulse is 
given by 

vs = √ (Y/ρ) . (18) 

Since typical mechanical moduli for strongly-bonded solids (metals, ceramics) are in the 
50 GPa range with densities ~1-10×103 kg/m3, sound velocities in these solids are of 
order vs ~ 5000 m/s. Measurement of the speed of sound in a solid thus provides another
convenient way to obtain its Young’s modulus. 

3. Fracture Strength. The maximum normal strain for an isotropically elastic 
body subjected to a uniaxial stress occurs across a plane normal to the stress axis. One 
might expect such a body to fail by fracture across this plane when subjected to a
sufficiently large tensile force that the sum of the individual binding forces Fb exerted by 
atoms across this plane is exceeded. This will occur for a stress 

σth = F/A ≈ FbnA/a2nA = (–dUb/dr)max/a2 (19) 

where nA is the number of atom pairs facing across the plane, whose interatomic spacing 
is a, Ub is the bonding energy per bond of length r. σth is the theoretical tensile strength 
or cohesive strength of the solid. A reasonable estimate for σth can be made with some 
knowledge of the interatomic bond energies (in covalent solids, from individual covalent
bond energies, or in ionic solids from the summed Coloumb interaction between ions). 
Typical values yield 

σth ≈ Y/3. (20) 

12Allan D. Pierce, Acoustics: An Introduction to its Principles and Applications (Optical Society of 
America, Melville, NY, 2005) 
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An experimental estimate of the cohesive strength can usefully be made by
recognizing that during fracture the stored elastic energy goes into creating new surfaces,
each with specific surface energy Γ. The stored elastic energy is just the work done by 
the tensile force 

W = Aa 0 ∫ 
ε σ dε = Aa σ 2/2Y , (21) 

where we have presumed Hookeian (ideal elastic) behavior to fracture. Assuming that 
fracture occurs reversibly and without dissipation of energy 

W = 2 Γ A = Aa σ 2/2Y, or (22) 

σth ≈ 2 (Γ Y/a)1/2. (23) 

Values of surface energy Γ are not always well known, and (21) should include the
uncertain contribution of dissipative processes (e.g. generation of hear, plastic flow, etc.)
A value of Γ for many ceramic solids is Γ ≈ 1 J/m2, which from (22) yields σth ≈ Y/3. The 
force-distance curve for atomic bonding is not strictly Hookeian for large displacements,
and (23) overestimates the cohesive strength. A better estimate, using more realistic 
force-distance curves, is 

σth ≈ (Γ Y/a)1/2 ≈ Y/6 (24) 

4. Fracture Mechanics. In real materials, tensile fracture occurs at applied 
stresses far below σth, because real solids invariably contain imperfections or flaws which
locally intensify the applied stress. Consider a sharp crack of length L and crack-tip 
radius ρc, extending through the solid normal to the applied tensile stress σ; this could be 
a surface flaw or some extensive internal flaw. It was recognized by at least 1913 that the
stresses at the end of a crack depend on the length of the crack, and that the presence of
the crack locally intensifies the applied stress at the crack tip by a factor {1 + 2√(L/ρc)}. 
At a small distance x ahead of the crack, the stress in the crack plane is given by 

σij ≈ σ {1 + 2 [L/(ρc+ 4x)]} . (25) 

The intensification occurs because of the “lever arm” effect of the crack length L. The 
intensified crack-tip (x = 0) stress (25) may exceed the cohesive strength (24), in which 
case the flaw extends at a minimum applied tensile stress 

σf = (YΓρc /4La)1/2 (26) 

and will lead to fracture if the extension is not checked or the rack tip blunted. The 
fracture stress (26) is a more general result than the usual Griffith13 criterion 

13A.A. Griffith, “Th phenomenon of rupture and flow in solids,” Phil. Trans. Roy. Soc. (London) 22 (1921) 
163-198. 
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σf = (2 YΓ/πL)1/2 (27) 

derived by equating the strain energy relieved by propagation of the crack to the resulting
increase in surface energy. The two are equivalent for ρc = 3a, i.e. atomically-sharp crack 
tips, but (26) is more conveniently applied to fracture, since subsequent crack blunting in 
ceramics (e.g. by plastic deformation ahead of the crack) is small and can be entirely
accounted for by adjusting Γ to include energy dissipated in plastic flow. Internal flaws 
can be treated with a small adjustment of L; for example, a sharp penny-shaped crack of 
diameter d is given an effective value L = 4d(1 – ν2)/π2. 

The relationships (26) or (27) can be written 

σf √L • (8a/ρc)1/2 = (2YΓ )1/2 or 
(28) 

σf √L • π1/2 (2YΓ )1/2= . 

The left-hand side of eqn (28) should then be a measurable material parameter, called the 
stress intensity factor 

KIc = (2 YΓ )1/2 (29) 

for the opening mode (mode I) of crack propagation. (There also exist two shear modes 
for crack propagation.) The crack will therefore advance whne the stress intensity factor 

KI = σ √(πL) (30) 

achieves the value KIc. The actual value of KIc will depend on the detailed sate of the 
material (viz flaw population, configuration and distribution; porosity; plasticity; second 
phase barriers; and other microstructural variables), and therein lies its usefulness as a
single parameter for characterizing fracture strength. KIc is usually reasonably 
independent of temperature (following Y and Γ ), so the stress to extend inherent flaws 
should be roughly temperature independent also. 

Experimental Procedure 

1. Glass melting. In this experiment, you will melt a series of alkali borate
glasses with compositions 10, 15, 20, 23, 25, 28.5, 30 and 40 mol% Na2O. These will 
have been produced by reacting sodium carbonate (Na2CO3) with boric acid (H3BO3).
Because the Na and B come from different reactants that are measured out separately by
weight, it is common to represent the glass composition as RNa2O•B2O3, instead of by the 
alkali mole fraction M (i.e. as MNa2O•[1–M]B2O3), where the relative constituent oxide 
ratio R = M/(1-M) or M = R/(1+R). The stated mole fractions therefore correspond to R 
= 0.091, 0.176, 0.25, 0.30, 0.33, 0.40, 0.43 and 0.67. The two starting ingredients 
decompose on heating and reacting 

RNa2CO3 + 2H3BO3 = RNa2O•B2O3 + 3H2O + RCO2 (31) 
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accompanied by evolution of large volumes of (volatilized) gas that can lead to 
considerable foaming of the product until fully evolved. For this reason, the constituents
were heated together slowly in a box furnace, beginning at 200 ˚C and increasing
temperature by 100 ˚C increments every 30 minutes to 1000 ˚C. Because of time 
constraints, glasses of these compositions have been prepared in advance in 250 ml
alumina crucibles, poured into smaller 50 ml alumina crucibles for ease of handling, and
cooled. Nevertheless, as an exercise you should calculate the weights of each constituent
required to produce the 50g or so of final product glass for each composition. 

2. Glass fiber drawing and the glass transition. Reheat the crucibles and glass 
contents to 900 ˚C in a box furnace to remelt the glasses. Each melted product should, at 
900 ˚C, be a low viscosity clear liquid without bubbles. Let the crucibles equilibrate for
15 minutes, then withdraw each crucible in turn with tongs and set it on an insulating
brick. While one group member holds the hot crucible with tongs, another should take a
~200 mm length of 4-mm diameter vitreous silica rod and dip one end of the rod into the
glass melt, withdrawing the rod slowly so as to draw out a glass rod or fiber at least 2-mm 
in diameter and 200-300 mm in length if possible. The drawing operation needs to be
carried out slowly and at a critical viscosity (similar to that of honey or molasses),
achieved over a small temperature range somewhat above Tg, as the glass in the crucible 
cools. Drawing will stop rather suddenly when the melt cools significantly below this
temperature range. Using diagonal cutters, cut the fiber near to the now-solidified melt 
surface and, when cool, break it off from the silica rod. You will want to draw at least 
one fiber of each composition and will need to reheat the crucible to 900 ˚C for 15 
minutes between drawings if you elect to draw more. Keep fibers of different 
compositions separate in labeled trays or boxes. Make note of your qualitative
impression of the comparative viscosities of each melt when first extracted from the
furnace at 900 ˚C. 

3. Sound velocity, density and elastic modulus. The rigidity of each borate glass 
composition will be assessed by measuring its mechanical response as characterized by 
its elastic modulus. This is most easily done by measuring the speed vs of sound (an
extensional wave) in the fiber, because for a purely axial compressional pulse Young’s
modulus Y for a glass of density ρ is given from (18) by 

Y = ρ vs 
2 . (32) 

The propagating compressional pulse, with rise time of < 1µs, is generated with a signal
generator coupled to piezoelectric element attached to one end of the fiber, and its arrival
is detected at the other with a second piezoelectric element. The time delay between sent
and received pulses can be measured from oscilloscope traces of the piezoelectric
potential(s), measured from the initial signal onset; from that delay and the accurately 
measured length of the fiber the pulse velocity can be deduced. The glass density can be
measured by weighing the crucible and glass contents left over after fiber pulling,
subtracting the previously measured weight of the empty crucible to get the mass of the
glass, then filling the crucible with water and reweighing to get the volume of the glass 
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remaining in the crucible. Alternatively, the glass fiber can be weighed and its volume
estimated from its length and average diameter. Or, the supplied graph of density vs. 
Na2O content may be consulted.

Plot the elastic modulus deduced against glass composition and use this 
information to establish where the maximum conversion from [BO3] triangles to [BO4]
tetrahedra appears to have been effected before or at the same time as the alkali modifier 
begins to break up the network connectivity. 
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