
3.014 Materials Laboratory 
Oct. 24th – Oct. 28th, 2005 

Lab Week 2 – Module γ−3 

BOND STRENGTH 

OBJECTIVES 

•  Introduce normal modes of vibration. 
•  Introduce IR and Raman spectroscopy. 
•  Understand how chemistry effects bond strength in polymers. 

Tasks 

1) Obtain the FT-IR spectrum for various polymers having C-C, C=C, C-H, C­
O, C–F, C=O, and N–H bonds. 

2) Identify the various modes of vibrational bonds for each material by 

comparing with reference standards. 


3) Estimate bond strength of each material analyzing shift in peak position  
     of Transmittance-Wavenumber representation.  

4) Compare various bonds through their peak position to explore effect of 
      chemical nature on bond strength. 
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Introduction 

The scope of this laboratory experiment is to understand excitations in molecules and 
solids. It is known that solids are constantly vibrating because of the thermal energy that 
they possess and because of interactions with external energy fronts (e.g. electromagnetic 
and sound waves). 

Also, remember that in quantum mechanics we have already seen that a particle in a 
potential cannot be at rest, thus particles are always oscillating.  

All solids can be thought as a series of balls (the atoms) kept together with springs (the 
chemical bonds). The mass of the balls is a simple function of the chemical nature of the 
atoms that compose the material, while the spring constant depends simply on the bond 
strength. This assumption not only allows for a substantial simplification of the analysis 
of vibration in solids but also helps with the understanding of the results of vibrational 
spectroscopic methods.  

This laboratory will use basically the peak position of IR spectra to understand the effect 
of chemistry on bond strength of polymer materials. 
The Fourier Transform Infrared Spectroscopy (FT-IR) is employed to explore this 
relationship. 

Normal Modes of Vibration 

In order to understand vibrations in solids it is important to first understand vibrations in 
simpler systems such as a series of masses held together with springs. In particular the 
concept of normal modes has central importance in the analysis of all the problems that 
deal with molecular dynamics. 

Definition: 
Normal modes: are the vibrational modes that decouple the energy problem, i.e. they 
diagonalize the Hamiltonian of the system 

Let’s see what this means by considering a system of three identical masses (m) kept 
together by four springs of constant k as shown in figure 1. 

In order to solve the classical problem of the oscillations of these masses the first thing to 
do is to set a system of coordinates that conveniently describes the system. In this 

k k k k 
m m m 

x1 x2 x3 

Figure 1. Schematic drawing of a series of equal masses held together by equal massless springs. The 
boxes at the extremes represent unmovable infinite masses.  
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particular case we will assume that the masses can move only along the mass-mass 
direction, that is, we will consider only the one dimensional problem. As shown in figure 
1 the first choice that we can make is that of the “internal coordinates”, a series of 
coordinates xi that describes the displacement of masses from their rest position. 

Classically this system can be solved by first writing its Hamiltonian as a function of the 
three internal coordinates (x1, x2, x3) and of the three momenta of the particles (p1, p2, p3) 

2 2 2 
2 1 ( 21 1 (H = T + V = 

p 
+ 

p2 + 
p3 + 

1 kx1
2 + xk 2 − x1 ) + xk 3 − x2 ) + 

1 kx3
2 (1)

2m 2m 2m 2 2 2 2 

where T and V are the total kinetic and potential energy of the system. 

A complete solution of the system is then determined by solving the six differential 
equations 

⎧ ∂ H 
= 

dxi 
⎪ ⎪ ∂ p dt 

dp iwith = ,2,1 and 3 (2)⎨∂ H
i 

i⎪ −= 
⎪∂ xi dt⎩ 

It should be evident that all of these equations will depend on at least 4 of the system 
variables. 

It can be shown that there always exists a linear combination of the internal coordinates 
called normal coordinates that generates a Hamiltonian that is simply the sum of the three 
independent Hamiltonians. A consequence of this is that the solution of the vibrational 
problem of the system becomes the solution of three simpler and independent problems. 

Each solution is a normal mode of vibration that is a vibration that happens at a given 
energy. 

In this particular problem by introducing the following variables 

⎧ X = x1 − x3
⎪ Y = x1 − *2 x2 + x3⎪ 
⎪ ⎪Z = x1 + *2 x2 + x3
⎨ (3)
⎪ P = p − p1 1 3 

⎪ P = p − *2 p + p1 2 3⎪ 2 

⎪ P3 = p + *2 p + p⎩ 1 2 3 

it can be shown that the Hamiltonian becomes: 
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H = 
Px + 

Py + 
Pz + 

1 kX 2 + 
1 kY 2 + 

1 kZ 2 = 
2m 2m 2m 2 2 2 

⎛ Px ⎛ Py 1 
= ⎜ + 

1 kX 2 ⎞⎟
⎠

+ ⎜
⎝
⎜ 2m 

+ kY 2 
⎟⎟
⎞

+ ⎜
⎛ Pz + 

1 kZ 2 ⎞⎟ = H x + H y + H (4)z
⎝ 2m 2 2 ⎠ ⎝ 2m 2 ⎠ 

Each Hamiltonian can be solved independently and indeed the whole system can be 
solved by solving the three independent systems. 

⎧ ∂ H  dX  ⎧ ∂ H 
= 

dY  ⎧ ∂ H  dZ  
= =⎪ ⎪⎪ ∂ p  dt  ; ⎪⎪

⎨ 
∂ py dt  ⎪ ∂ p  dt  

⎨ 
x z; ⎨ (5) 

⎪∂ H 
= −  

dpx ⎪∂ H dpy ⎪∂ H dpz 
⎪ ⎩ ∂ X  dt  ⎩⎪ ∂ Y 

= −  
dt  ⎩⎪ ∂ Z 

= −  
dt  

Each system will be solved by an equation of the type    

X = C exp( i  tν ) (6) 

where C is a real number that specifies the vibrational amplitude of the normal mode and 
ν is the frequency of oscillation of the normal mode. 

To summarize: normal modes are those particular vibrational modes of a system that 
decouple the energy problem, that is, they allow the separation of the Hamiltonian into 
independent Hamiltonians. (This property in linear algebra can be called orthogonality). 

Additionally, it can be showed that any system vibration is always a linear combination 
of normal modes. 

This classical derivation of the normal modes can be extended trivially to quantum 
mechanics by simply changing the classical energy expression with the quantum 
mechanics operators. Even in that case it can be shown that the normal modes are the 
ones that allow for the separation of the Hamiltonian of the system into independent 
Hamiltonians. 

In quantum mechanics we know that frequency and energy are related by: 

E = hν = hc  ω (7) 

where ν is the frequency (expressed in s-1), while ω is the wavenumber (generally 
expressed in cm-1), h is Planck’s constant (6.626× 10-34J s) and c is the speed of light in 
vacuum (2.99792458 × 1010 cm/s). 

Thus each normal mode has its own energy. 
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Molecular Dynamics 

A molecule can be seen as an isolated system of atoms (masses) held together by forces 
around their equilibrium position. 

Let’s first look at a diatomic molecule. The energy that keeps the molecule together is 
shaped as illustrated in figure 2 

R 

E 

Ro 

p
o

Figure 2. Schematic drawing of an energy- osition plot for a diatomic molecule. R represents the 
distance between the atoms. As shown from the red line near the equilibrium position (R ) the 
energy barrier can always be approximated by a parabola and thus the bond can be treated like a 
spring. 

Around the equilibrium position the energy increases as the square of the displacement, 
that is, the energy is that of a spring (or of a system of springs) that holds the atom in 
place. As seen in 3.012 a particle in a square potential (linear harmonic oscillator) has 
quantized energy levels evenly spaced. These energy levels are the vibrational levels of 
the molecule. Their frequency of oscillation is determined by the difference in energy 
between the vibrational states as shown in figure 3.  
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Figure 3 Distribution of the vibrational energy levels in a linear harmonic oscillator.  is the 
frequency expressed in s  is the wavenumber expressed in cm . µ is the effective mass, 
while k is the spring constant 
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Table 1 Stretching frequencies for some diatomic molecules 

µ (amu) k (mdyne/Å) ω (cm-1) 
H2 0.5 5.2 4160 
D2 1.0 5.2 2940 

HF 0.95 8.8 3950 
HCl 0.97 4.8 2885 
HBr 1.00 3.9 2559 
HI 1.00 2.9 2230 

A polyatomic molecule composed of N atoms has 3N degrees of freedom of which 61 are 
the 3 translations and the 3 rotations of the molecule as a whole and thus do not change 
the relative distances between the molecules. The other 3N-6 are vibrational degrees of 
freedom of the molecules. For each degree of freedom there is a normal mode of 
vibration. While the energy-position plot for a diatomic molecule is a two dimensional 
plot, the same plot for a polyatomic molecule becomes a (3N-6)+1 dimensional surface of 
a very complex shape. If this surface is sectioned by a plane that follows the displacement 
along a normal mode then (at least around the equilibrium position) the plot will look 
exactly like the one in fig. 3. This is the beauty of normal mode formalism. 

Normal modes arise from stretching bonds between atoms (some examples are given in 
Table 1), as well as bending motions involving multiple atoms. Some normal modes are 
localized mostly on a few atoms and consequently are used to detect those chemical 
bonds or groups, while others are distributed along the whole molecule and thus can be 
used to extract information about the whole molecule. 

Infrared Spectroscopy (IR) 

There are 2 main ways for probing the vibrations of a molecule or a solid: infrared 
spectroscopy and Raman spectroscopy. In the case of infrared (IR) spectroscopy an 
electromagnetic wave (photon) of energy comparable to that of the vibrational mode is 
sent to the sample and its absorption is probed. In the case of Raman spectroscopy an 
electro magnetic wave (photon) of energy much higher then the vibrational energy is sent 
to the sample. The particle that is in one of the vibrational states gets excited and goes 
into a virtual state from which it immediately decays back, emitting another photon. In 
most cases the particle goes back into its original state (known as Rayleigh or elastic 
scattering) but in rare cases the particles will undergo an inelastic collision with the 
incident photon (energy is transferred) and decay to a different vibrational state. In such 
cases the difference in energy between the incoming and the emitted photons equals the 
vibrational energy. 

1 5 in the case of linear molecules. 
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Figure 4 Schematic drawing of the three possible off-resonance interactions between an electro­
magnetic wave and a molecule. In the case of Rayleigh scattering a photon gets absorbed and 
immediately reemitted without gaining or losing energy (left). In the case of anti-Stokes scattering 
a photon excites a particle that is in the second vibrational state. The particle then decays to the 
first vibrational state, losing energy (right). The opposite happens in Stokes scattering (middle). 

In the case of IR spectroscopy the interaction between the molecule and the 
electromagnetic wave can happen only if there is a change in molecular dipole during the 
vibration. For example, let’s consider the molecule of chlorine (Cl2). Stretching this 
molecule does not change its dipole (that remains zero) thus it is not possible to excite 
this vibrational mode with an infrared photon. In the case of acid chloride (HCl), 
stretching this molecule changes its dipole. Thus, if irradiated with a photon of the right 
energy this molecule will absorb it.  

Infrared Absorption Spectra of Polymers 

IR spectroscopy is an invaluable tool for analyzing polymeric materials.  The various 
bending and stretching modes of bonds and chemical groups in a given polymer repeat 
structure give rise to different characteristic absorption peaks in the wavenumber range 
4000-650 cm-1, which can serve as a “signature” of that polymer, enabling identification. 
Chemical groups that are IR active in this range are illustrated in Fig. 5 (ref. R.Young, 
Introduction to Polymers, p.224).   

The frequency at which a peak is observed is directly related to the difference between 
vibrational energy levels ∆E through: 

ν = ∆E/h (8) 

The vibrational frequency can be related to the force constant of the associated bond and 
the atomic masses through: 
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1 k (9)ν =
2π µ 

From this expression we see that stronger bonds will tend to absorb IR radiation of higher 
wavenumber (ex., C=O vs. C-O).    

In this lab we will obtain the IR spectra for various polymer systems and identify peaks in

the absorption spectra with various normal modes based on literature references.  The 

characteristic frequencies of the observed peaks will be correlated with the strength of the

associated bonds. 


Figure removed for copyright reasons. 

Fig. 3.28 in Young, R. J., and P.A. Lovell. Introduction to Polymers. 2nd ed. Stanley Thornes (Publishers) Ltd, 2000. 
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