What are the bond angles in PH₃? (P has 5 valence electrons.)

- 1. 120°
- $2. < 120^{\circ}$
- 3. 109.5°
- $4. < 109.5^{\circ}$
- 5. 90°
- 6. $< 90^{\circ}$

What are the bond angles in PH₃? (P has 5 valence electrons.)

```
12% 1. 120°

19% 2. < 120°

3% 3. 109.5°

55% 24. < 109.5°

3% 5. 90°

9% 6. < 90°
```

Fill in the blank An electron in a bonding MO will be attracted to BOTH nuclei, and will be ______compared to an atomic orbital for a single nuclei.

- 1. higher in energy
- 2. no different in energy (energy is conserved).
- 3. lower in energy

- 1. higher in energy
 - 2. no different in energy (energy is conserved).
- 12% •3. lower in energy

Pick the correct answer for the MO diagram of He₂

Pick the correct answer for the MO diagram of He₂

Determine the BO for Li₂.

- 1. 0
- 2. 0.5
- 3. 1
- 4. 1.5
- 5. 2
- 6. 2.5
- 7. 3

Determine the BO for Li₂.

- **4%** 1. 0
- **2.** 0.5
- 84% (3. 1)
- **3%** 4. 1.5
- **5**% **5**. 2
- 0% 6. 2.5
- 0% 7. 3

Fill in the C₂ MO diagram and pick the correct statement

- 1. Electron configuration is $(\sigma_{2s})^2 (\sigma_{2s}^{*)2} (\pi_{2px})^2 (\pi_{2py})^2$ and bond order is 2.
- 2. Electron configuration is $(\sigma_{2s})^2 (\sigma_{2s}^{*)2} (\pi_{2px})^2 (\pi 2_{py})^2$ and bond order is 0.
- 3. Electron configuration is $(\sigma_{2s})^2 (\sigma_{2s}^{*)2} (\pi_{2px})^2 (\pi_{2px}^{2px})^2$ and bond order is 2.
- 4. Electron configuration is $(\sigma_{2s})^2 (\sigma_{2s}^{*)2} (\pi_{2px}^{*})^2 (\pi_{2px}^{*})^2$ and bond order is 0.

Fill in the C₂ MO diagram and pick the correct statement

- 1. Electron configuration is $(\sigma_{2s})^2 (\sigma_{2s}^{*)2} (\pi_{2px})^2 (\pi_{2py})^2$ and bond order is 2.
- Electron configuration is $(\sigma_{2s})^2 (\sigma_{2s}^{*)2} (\pi_{2px})^2 (\pi 2_{py})^2$ and bond order is 0.
- 3. Electron configuration is $(\sigma_{2s})^2 (\sigma_{2s}^{*)2} (\pi_{2px})^2 (\pi_{2px}^{2px})^2$ and bond order is 2.
- 4. Electron configuration is $(\sigma_{2s})^2 (\sigma_{2s}^{*)2} (\pi_{2px})^2 (\pi_{2px}^{2px})^2$ and bond order is 0.

What is the bond order for O_2 ?

- 1. 0
- 2. 1
- 3. 2
- 4. 3
- 5. 4
- 6. 8

What is the bond order for O_2 ?

- 2. 1
- ·3. 2
 - 4. 3
 - 5. 4
 - 6. 8

MIT OpenCourseWare http://ocw.mit.edu

5.111 Principles of Chemical Science Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.