Which of the following is true about chelating ligands and chelates?

- 1. A chelating ligand can bind to a metal with multiple points of attachment
- 2. A chelating ligand contains multiple Lewis acids
- 3. Chelates are thermodynamically unstable due to entropic effects
- 4. Both 1 and 3
- 5. All of the above

Clicker Competition Today!

Which of the following is true about chelating ligands and chelates?

- 38%
 - ✓ 1. A chelating ligand can bind to a metal with multiple points of attachment
- 11%
- 2. A chelating ligand contains multiple Lewis acids

4%

- 3. Chelates are thermodynamically unstable due to entropic effects
- 35%
- 4. Both 1 and 3

- 12%
- 5. All of the above

Clicker Competition Today!

Which statement is correct?

- 1. Stable/unstable refers to reaction rate (the rate associated with the tendency to decompose)
- 2. Stable/unstable refers to ΔG (the spontaneous tendency to decompose)
- 3. A chemist would say that a compound is stable if it is around for a long time before decomposing.
- 4. A chemist would say that a compound is stable if the ΔG for its decomposition into its elements is a negative number.
- 5. 1 and 3
- 6. 2 and 4

Which statement is correct?

Stable/unstable refers to reaction rate (the rate 3% associated with the tendency to decompose) Stable/unstable refers to ΔG (the spontaneous 52% tendency to decompose) A chemist would say that a compound is stable if it is 4% around for a long time before decomposing. 4. A chemist would say that a compound is stable if the ΔG for its decomposition into its elements is a negative number. 5% 1 and 3

6. 2 and 4

35%

Which statement is true for this reaction with hydrogen peroxide $IO_3^- + I^- + 2 H_2O_2 + 2H^+ \rightarrow 2 O_2 + 3 H_2O_1 + I_2$

- 1. I in IO₃⁻ is being **reduced** to I₂; I⁻ is being **oxidized** to I₂ O in H₂O₂ is being **oxidized** to O₂; O in H₂O₂ is being **reduced** to H₂O
- 2. I in IO₃⁻ is being **reduced** to I₂; I⁻ is being **reduced** to I₂ O in H₂O₂ is being **oxidized** to O₂; O in H₂O₂ is being **oxidized** to H₂O
- 3. I in IO₃⁻ is being **reduced** to I₂ and I⁻ is being **oxidized** to I₂ O in H₂O₂ is being **oxidized** to O₂; O in H₂O₂ is **not changing** oxidation states when forming H₂O
- 4. I in IO_3^- is being **reduced** to I_2 and I^- is being **oxidized** to I_2 O is **not changing** oxidation states **at all**.

Which statement is true for this reaction with hydrogen peroxide $IO_3^- + I^- + 2 H_2O_2 + 2H^+ \rightarrow 2 O_2 + 3 H_2O + I_2$

- 1. I in IO₃⁻ is being **reduced** to I₂; I⁻ is being **oxidized** to I₂
 O in H₂O₂ is being **oxidized** to O₂; O in H₂O₂ is being **reduced** to H₂O
- 2. I in IO₃⁻ is being **reduced** to I₂; I⁻ is being **reduced** to I₂
 O in H₂O₂ is being **oxidized** to O₂; O in H₂O₂ is being **oxidized** to H₂O
- I in IO₃⁻ is being **reduced** to I₂ and I⁻ is being **oxidized** to I₂ O in H₂O₂ is being **oxidized** to O₂; O in H₂O₂ is **not changing** oxidation states when forming H₂O
 - 4. I in IO₃⁻ is being **reduced** to I₂ and I⁻ is being **oxidized** to I₂
 O is **not changing** oxidation states **at all**.

Predict which statement is true about H_2O_2 $H_2O_2 + 2 H^+ + 2e^- \rightarrow 2 H_2O$ $E^\circ = +1.78$

- 1. with a large (+) E° , H_2O_2 would be a good oxidizing agent
- 2. with a large (+) E° , H_2O_2 would be a good reducing agent
- 3. with a large (+) E° , the reduction of H_2O_2 would be spontaneous
- 4. with a large (+) E° , the reduction of H_2O_2 would be non-spontaneous
- 5. 1 and 3
- 6. 1 and 4
- 7. 2 and 3
- 8. 2 and 4

Predict which statement is true about H_2O_2 $H_2O_2 + 2 H^+ + 2e^- \rightarrow 2 H_2O$ $E^\circ = +1.78$

with a large (+) E° , H_2O_2 would be a good oxidizing agent 9% with a large (+) E° , H_2O_2 would be a good reducing agent 4% with a large (+) E° , the reduction of H_2O_2 would be spontaneous 4% with a large (+) E° , the reduction of H_2O_2 would be non-0% spontaneous 65%(**) 1 and 3 6% 1 and 4 2 and 3 7%

8. 2 and 4

4%

Select the correct rate expression for $2HI(g) \rightarrow H_2(g) + I_2(g)$

1. rate =
$$-d[HI]/dt = -d[H_2]/dt = -d[I_2]/dt$$

2. rate =
$$-d[HI]/dt = d[H_2]/dt = d[I_2]/dt$$

3. rate =
$$-\frac{1}{2} d[HI]/dt = d[H_2]/dt = d[I_2]/dt$$

4. rate =
$$-2d[HI]/dt = -d[H_2]/dt = -d[I_2]/dt$$

5. rate =
$$-2d[HI]/dt = d[H_2]/dt = d[I_2]/dt$$

Select the correct rate expression for $2HI(g) \rightarrow H_2(g) + I_2(g)$

$$rate = k[A]^m[B]^n$$

For m = 2, If you triple the concentration of [A], you

- 1. triple the rate.
- 2. Increase the rate by order of 5.
- 3. increase the rate by an order of 6.
- 4. increase the rate by an order of 9.

$$rate = k[A]^m[B]^n$$

For m = 2, If you triple the concentration of [A], you

- 2% 1. triple the rate.
- 1% 2. Increase the rate by order of 5.
- 3. increase the rate by an order of 6.
- 91% 4. increase the rate by an order of 9.

$$rate = k[A]^m[B]^n$$

For m = -1/2, If you double the concentration of [A], you multiply the rate by

- 1. 0.5 times
- 2. -0.5 times
- 3. 0.7 times
- 4. -0.7 times

$$rate = k[A]^m[B]^n$$

For m = -1/2, If you double the concentration of [A], you multiply the rate by

1. 0.5 times

2. -0.5 times

78% **3**. 0.7 times

4. -0.7 times

For the same material, does it take longer for 1 ton to go to ½ ton or for 1 gram to go to ½ gram?

- 1. It takes longer to go from 1 gram to ½ gram
- 2. It takes longer to go from 1 ton to $\frac{1}{2}$ ton
- 3. The conversion times are equal.

For the same material, does it take longer for 1 ton to go to ½ ton or for 1 gram to go to ½ gram?

- 1. It takes longer to go from 1 gram to ½ gram
- 2. It takes longer to go from 1 ton to $\frac{1}{2}$ ton
- 33% 3. The conversion times are equal.

MIT OpenCourseWare http://ocw.mit.edu

5.111 Principles of Chemical Science Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.