5.111 Lecture Summary #14 Wednesday, October 8, 2014 **Readings for today:** Sections 3.4, 3.5, 3.6 and 3.7 (Same sections in 4^{th} and 5^{th} ed) – Valence Bond Theory. **Read for Lecture** #16: Sections 6.13, 6.15, 6.16, 6.17, 6.18, and 6.20 (Same sections in 4^{th} and 5^{th} ed) – The Enthalpy of Chemical Change. ## Topics: I. Valence bond theory and hybridization - **A.** Sigma and pi bonds - **B.** Hybridization of atomic orbitals - i. sp³ hybridization - ii. sp² hybridization - iii. sp hybridization #### I. VALENCE BOND THEORY AND HYBRIDIZATION In **valence bond theory**, bonds result from the pairing of unpaired electrons in atomic orbitals. #### A. SIGMA AND PI BONDS σ (sigma) bond: cylindrically symmetric with—nodal plane across the bond axis. π (pi) bond: a bond with e⁻density in two lobes, one on each side of the bond axis. A pi bond has a ______nodal plane along the bond axis. We can describe multiple bonds according to valence-bond theory. - single bond: - double bond: one σ-bond plus one _____ - triple bond: one σ -bond plus ______ π -bonds #### **B. HYBRIDIZATION OF ATOMIC ORBITALS** # i) sp³ hybridization A carbon atom has four unpaired electrons available for bonding once a 2s-electron is ______ to an empty 2-p orbital. The sp³ hybrid orbitals are equivalent and degenerate. They differ only in their _____ in space. For carbon, each sp³ orbital contains a single electron, allowing four bonds. What provides the energy for the initial electron promotion? _____! Each bond is labeled based on the bond type $(\sigma \text{ or } \pi)$ and atomic orbital composition: ____(C ____, H____) Consider ethane, C₂H₆. Two bond types in ethane: _____ and _____. **Nitrogen:** Electron promotion _____occur with nitrogen because promotion would not increase the number of unpaired electrons available for bonding. | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\frac{\rfloor}{2sp^3} {2sp^3} \frac{\rfloor}{2sp^3} \frac{\rfloor}{2sp^3}$ | | | | |---|--|--|--|--| | N (5 valence e's) | hybrid orbitals | | | | | sp^3 | $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $ | ${2sp^3}$ | ${2sp^3}$ | 2sp ³ | |--------|--|-----------|-----------|------------------| | H | | | | | H-N-H bond angle _______ N-atom geometry: ______ N-H bond description: _____ Oxygen: Electron promotion does not occur. H₂O geometry: _____ O-H bond description: ____ # ii) sp² hybridization sp² hybrid orbitals form from the combination of one s-orbital and two p-orbitals. 3 hybrid orbitals 1 p-orbital **Boron:** Boron has 3 unpaired electrons available for bonding once a 2s-electron is promoted to an empty 2-p orbital. The s-orbital and two of the p-orbitals hybridize to form _____sp² orbitals. The three sp²-orbitals lie in a ______ to minimize electron repulsion. **Carbon:** Carbon can also form sp^2 hybrid orbitals, such as in the case of ethylene C_2H_4 . Ethylene (C₂H₄) has a C-C double bond, meaning 1 _____-bond and 1 _____-bond. In addition to the C-C double bond, there are four C-H bonds: $\sigma($ _____,___) Molecules _____ rotate around a double bond. Rotation would require breaking the $pi(\pi)$ bond. # iii) sp hybridization sp hybrid orbitals form from the combination of one s-orbital and 1 p-orbital. Carbon can also form sp hybrid orbitals. Acetylene (C₂H₂) with C-C triple bond. ## Summary for hydrocarbon molecules that contain two-carbons: Carbons in C_2H_6 are _____hybridized, have a _____C-C bond, and **tetrahedral** geometry Carbons in C_2H_4 are \mathbf{sp}^2 hybridized, have a _____C-C bond, and _____ geometry Carbons in C_2H_2 are _____hybridized, have a **triple** C-C bond, and _____ geometry #### **DETERMINING HYBIDIZATION IN COMPLEX MOLECULES** To determine the hybridization of a given atom in a molecule, (# of bonded atoms) + (# of lone pairs) = # of hybrid orbitals 2 hybrid orbitals- ______, 3 hybrid orbitals - ______, 4 hybrid orbitals- sp³ Exception: single-bonded, ______ atoms. For the purposes of this course, do NOT hybridize single-bonded, terminal atoms. ## Try an example: ascorbic acid (vitamin C) Identify the symmetry and name the hybrid or atomic orbitals that constitute the bonds below: Bonds to carbon b: Bonds to carbon d: C_h -H: C_d -O: $C_{b}^{-} C_{a}^{-} : \sigma(C2sp^{3}, C2sp^{3})$ $C_{d}^{-} C_{c}^{-} : \sigma(C2sp^{2}, C2sp^{3})$ C_b - C_c : $\sigma(C2sp^3, C2sp^3)$ C_d - C_e : C_b - C_c . O(C2SP, C2SP) # 5.111 Principles of Chemical Science Fall 2014 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.