5.111 Lecture Summary #14

Wednesday, October 8, 2014

Readings for today: Sections 3.4, 3.5, 3.6 and 3.7 (Same sections in 4^{th} and 5^{th} ed) – Valence Bond Theory.

Read for Lecture #16: Sections 6.13, 6.15, 6.16, 6.17, 6.18, and 6.20 (Same sections in 4^{th} and 5^{th} ed) – The Enthalpy of Chemical Change.

Topics: I. Valence bond theory and hybridization

- **A.** Sigma and pi bonds
- **B.** Hybridization of atomic orbitals
 - i. sp³ hybridization
 - ii. sp² hybridization
 - iii. sp hybridization

I. VALENCE BOND THEORY AND HYBRIDIZATION

In **valence bond theory**, bonds result from the pairing of unpaired electrons in atomic orbitals.

A. SIGMA AND PI BONDS

 σ (sigma) bond: cylindrically symmetric with—nodal plane across the bond axis.

π (pi) bond: a bond with e⁻density in two lobes, one on each side of the bond axis. A pi bond has a ______nodal plane along the bond axis.

We can describe multiple bonds according to valence-bond theory.

- single bond:
- double bond: one σ-bond plus one _____
- triple bond: one σ -bond plus ______ π -bonds

B. HYBRIDIZATION OF ATOMIC ORBITALS

i) sp³ hybridization

A carbon atom has four unpaired electrons available for bonding once a 2s-electron is ______ to an empty 2-p orbital.

The sp³ hybrid orbitals are equivalent and degenerate. They differ only in their _____ in space.

For carbon, each sp³ orbital contains a single electron, allowing four bonds.

What provides the energy for the initial electron promotion?

_____!

Each bond is labeled based on the bond type $(\sigma \text{ or } \pi)$ and atomic orbital composition:

____(C ____, H____)

Consider ethane, C₂H₆.

Two bond types in ethane: _____ and _____.

Nitrogen: Electron promotion _____occur with nitrogen because promotion would not increase the number of unpaired electrons available for bonding.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{\rfloor}{2sp^3} {2sp^3} \frac{\rfloor}{2sp^3} \frac{\rfloor}{2sp^3}$			
N (5 valence e's)	hybrid orbitals			

sp^3	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	${2sp^3}$	${2sp^3}$	2sp ³
H				

H-N-H bond angle _______

N-atom geometry: ______

N-H bond description: _____

Oxygen: Electron promotion does not occur.

H₂O geometry: _____ O-H bond description: ____

ii) sp² hybridization

sp² hybrid orbitals form from the combination of one s-orbital and two p-orbitals.

3 hybrid orbitals 1 p-orbital

Boron: Boron has 3 unpaired electrons available for bonding once a 2s-electron is promoted to an empty 2-p orbital.

The s-orbital and two of the p-orbitals hybridize to form _____sp² orbitals.

The three sp²-orbitals lie in a ______ to minimize electron repulsion.

Carbon: Carbon can also form sp^2 hybrid orbitals, such as in the case of ethylene C_2H_4 .

Ethylene (C₂H₄) has a C-C double bond, meaning 1 _____-bond and 1 _____-bond.

In addition to the C-C double bond, there are four C-H bonds: $\sigma($ _____,___)

Molecules _____ rotate around a double bond. Rotation would require breaking the $pi(\pi)$ bond.

iii) sp hybridization

sp hybrid orbitals form from the combination of one s-orbital and 1 p-orbital.

Carbon can also form sp hybrid orbitals. Acetylene (C₂H₂) with C-C triple bond.

Summary for hydrocarbon molecules that contain two-carbons:

Carbons in C_2H_6 are _____hybridized, have a _____C-C bond, and **tetrahedral** geometry Carbons in C_2H_4 are \mathbf{sp}^2 hybridized, have a _____C-C bond, and _____ geometry Carbons in C_2H_2 are _____hybridized, have a **triple** C-C bond, and _____ geometry

DETERMINING HYBIDIZATION IN COMPLEX MOLECULES

To determine the hybridization of a given atom in a molecule,

(# of bonded atoms) + (# of lone pairs) = # of hybrid orbitals

2 hybrid orbitals- ______, 3 hybrid orbitals - ______, 4 hybrid orbitals- sp³ Exception: single-bonded, ______ atoms. For the purposes of this course, do NOT hybridize single-bonded, terminal atoms.

Try an example: ascorbic acid (vitamin C)

Identify the symmetry and name the hybrid or atomic orbitals that constitute the bonds below:

Bonds to carbon b: Bonds to carbon d:

 C_h -H: C_d -O:

 $C_{b}^{-} C_{a}^{-} : \sigma(C2sp^{3}, C2sp^{3})$ $C_{d}^{-} C_{c}^{-} : \sigma(C2sp^{2}, C2sp^{3})$

 C_b - C_c : $\sigma(C2sp^3, C2sp^3)$ C_d - C_e :

 C_b - C_c . O(C2SP, C2SP)

5.111 Principles of Chemical Science Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.