LECTURE 32

1. (a) Write the rate law that corresponds to the following reaction mechanism using the steady-state approximation. **Do not** make any assumptions about rates of step 1 and step 2.

Step 1
$$2 \text{ NO}_2\text{Cl} \xrightarrow{k_1} \text{N}_2\text{O}_4 + \text{Cl}_2$$

Step 2
$$k_2$$

 $N_2O_4 \rightarrow 2NO_2$

(b) Write the rate law if the first step is in fast equilibrium and the second step is slow.

(a) rate =
$$\frac{2k_2k_1[NO_2Cl]^2}{(k_{-1}[Cl_2]+k_2)}$$

(b) rate =
$$\frac{2k_2k_1[NO_2Cl]^2}{(k_{-1}[Cl_2])}$$
 or rate = $\frac{2k_2K_1[NO_2Cl]^2}{[Cl_2]}$

2. For the reaction: $2A + B_2 \rightarrow 2AB$, a proposed mechanism is:

Step 1
$$A + B_2 \stackrel{k_1}{\rightleftharpoons} AB_2$$

Step 2
$$k_2$$

 $A + AB_2 \rightarrow AB + AB$

If the consumption of AB₂ by reaction with A is slower than the decomposition of AB₂, write the rate law for this mechanism using the steady-state approximation.

$2k_2K_1[A]^2[B_2]$ or $2k_2k_1[A]^2[B_2]/k_{-1}$

3. It has been experimentally determined that the rate law for the reaction,

$$O_3 + NO \rightarrow O_2 + NO_2$$
, is rate = $k_{obs}[O_3][NO]$.

Write the rate law that corresponds to the following reaction mechanism, and state whether this reaction mechanism is consistent with the experimental rate law.

Step 1 NO + NO
$$\stackrel{k_1}{\rightleftharpoons}$$
 N₂O₂ (fast, reversible)

Step 2
$$N_2O_2 + 2O_3 \rightarrow 2NO_2 + 2O_2$$
 (slow)

rate = $k_2 K_1 [O_3]^2 [NO]^2$ or $k_{obs} [O_3]^2 [NO]^2$

No the above mechanism is not consistent with the experimental rate law.

LECTURE 32

Additional Book Problems:

Atkins and Jones, Chemical Principles, fifth edition: Chapter 14.7 and 14.8, problem 14.48, 14.49 Chapter 14.7 and 14.8, problem 14.51, 14.52 MIT OpenCourseWare https://ocw.mit.edu

5.111 Principles of Chemical Science Fall 2014

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.