Select the correct HIGH SPIN octahedral crystal field splitting diagram for a d⁴ system Option A Option B Option C $\frac{1}{dx^2-y^2} \frac{1}{dz^2} \stackrel{\text{(e_g)}}{dz^2} \frac{1}{dz^2} \stackrel{\text{(e_g)}}{dz^2} \stackrel{\text{(e_g)}}{dz^2} \frac{1}{dz^2} \stackrel{\text{(e_g)}}{dz^2} \frac{1}{dz^2} \stackrel{\text{(e_g)}}{dz^2} \frac{1}{dz^2} \stackrel{\text{(e_g)}}{dz^2} \frac{1}{dz^2} \stackrel{\text{(e_g)}}{dz^2} \stackrel{\text{(e_g)}$ - 1. Option A - 2. Option B - 3. Option C 1 ## Select the correct HIGH SPIN octahedral crystal field splitting diagram for a d⁴ system - 13% 1. Option A - 85% 2. Option B - 2% 3. Option C #### Which of the following will have filled d-orbitals? - 1. Ni^{2+} - 2. Pd^{2+} - 3. Cu^{2+} - 4. Au^{2+} - 5. Zn^{2+} - 6. Cd^{+2} - 7. 1 and 2 - 8. 3 and 4 - 9. 5 and 6 #### Which of the following will have filled d-orbitals? Select the correct tetrahedral crystal field splitting diagram for Cr³⁺, including correct orbital labels. Option A Option B Option C $$\frac{1}{dxy} \frac{1}{dxz} \frac{1}{dyz} \frac{1}{dyz} \frac{1}{dxz} \frac{1}{dyz} \frac{1}{dz} \frac{1}$$ - 1. Option A - 2. Option B - 3. Option C Select the correct tetrahedral crystal field splitting diagram for Cr³⁺, including correct orbital labels. Option A Option B Option C $\frac{1}{dxy} \frac{1}{dxz} \frac{1}{dyz} \frac{1}{(t_2)} \frac{1}{dxy} \frac{1}{dxz} \frac{1}{dyz} \frac{1}{(t_2)} \frac{1}{dx^2-y^2} \frac{1}{dz^2} \frac{1}{dyz} \frac{1}{(t_2)} \frac{1}{dxy} \frac{1}{dx^2-y^2} \frac{1}{dz^2} \frac{1}{(t_2)} \frac{1}{dxy} \frac{1}{dxy} \frac{1}{dxz} \frac{1}{(t_2)} \frac{1}{(t_2)} \frac{1}{dxy} \frac{1}{dxz} \frac{1}{(t_2)} \frac{1}{(t_2)}$ 8% 1. Option A - 85% - 2. Option B - 3. Option C ### For [CrCl₆]³⁻ the wavelength of most intensely absorbed light is 740 nm, predicted the color of complex? - 1. Red - 2. Green - 3. Blue - 4. Yellow - 5. Orange - 6. Violet #### For [CrCl₆]³⁻ the wavelength of most intensely absorbed light is 740 nm, predicted the color of complex? 1. Red 9% Which of the following would you expect to be **true** for the comparison of d orbital energy between the square planar system and the square pyramidal system? - 1. d_{z^2} is destabilized for the square pyramidal case compared to square planar. - 2. d_{xz} and d_{yz} are destablilized for the square pyramidal case compared to square planar. - 3. $d_{x^2-y^2}$ and d_{xz} are degenerate for square pyramidal. - 4. a and b are true. - 5. All of the above are true. Which of the following would you expect to be **true** for the comparison of d orbital energy between the square planar system and the square pyramidal system? - 1. d_z2 is destabilized for the square pyramidal case compared to square planar. - 2. d_{xz} and d_{yz} are destablilized for the square pyramidal case compared to square planar. - 3. d_{x²-y²} and d_{xz} are degenerate for square pyramidal. - 56% (2)4. a and b are true. 13% 5. All of the above are true. MIT OpenCourseWare http://ocw.mit.edu 5.111 Principles of Chemical Science Fall 2014 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.