Select the correct HIGH SPIN octahedral crystal field splitting diagram for a d⁴ system

Option A Option B Option C $\frac{1}{dx^2-y^2} \frac{1}{dz^2} \stackrel{\text{(e_g)}}{dz^2} \frac{1}{dz^2} \stackrel{\text{(e_g)}}{dz^2} \stackrel{\text{(e_g)}}{dz^2} \frac{1}{dz^2} \stackrel{\text{(e_g)}}{dz^2} \frac{1}{dz^2} \stackrel{\text{(e_g)}}{dz^2} \frac{1}{dz^2} \stackrel{\text{(e_g)}}{dz^2} \frac{1}{dz^2} \stackrel{\text{(e_g)}}{dz^2} \stackrel{\text{(e_g)}$

- 1. Option A
- 2. Option B
- 3. Option C

1

Select the correct HIGH SPIN octahedral crystal field splitting diagram for a d⁴ system

- 13% 1. Option A
- 85% 2. Option B
- 2% 3. Option C

Which of the following will have filled d-orbitals?

- 1. Ni^{2+}
- 2. Pd^{2+}
- 3. Cu^{2+}
- 4. Au^{2+}
- 5. Zn^{2+}
- 6. Cd^{+2}
- 7. 1 and 2
- 8. 3 and 4
- 9. 5 and 6

Which of the following will have filled d-orbitals?

Select the correct tetrahedral crystal field splitting diagram for Cr³⁺, including correct orbital labels.

Option A Option B Option C
$$\frac{1}{dxy} \frac{1}{dxz} \frac{1}{dyz} \frac{1}{dyz} \frac{1}{dxz} \frac{1}{dyz} \frac{1}{dz} \frac{1}$$

- 1. Option A
- 2. Option B
- 3. Option C

Select the correct tetrahedral crystal field splitting diagram for Cr³⁺, including correct orbital labels.

Option A Option B Option C $\frac{1}{dxy} \frac{1}{dxz} \frac{1}{dyz} \frac{1}{(t_2)} \frac{1}{dxy} \frac{1}{dxz} \frac{1}{dyz} \frac{1}{(t_2)} \frac{1}{dx^2-y^2} \frac{1}{dz^2} \frac{1}{dyz} \frac{1}{(t_2)} \frac{1}{dxy} \frac{1}{dx^2-y^2} \frac{1}{dz^2} \frac{1}{(t_2)} \frac{1}{dxy} \frac{1}{dxy} \frac{1}{dxz} \frac{1}{(t_2)} \frac{1}{(t_2)} \frac{1}{dxy} \frac{1}{dxz} \frac{1}{(t_2)} \frac{1}{(t_2)}$

8%

1. Option A

- 85%
- 2. Option B
- 3. Option C

For [CrCl₆]³⁻ the wavelength of most intensely absorbed light is 740 nm, predicted the color of complex?

- 1. Red
- 2. Green
- 3. Blue
- 4. Yellow
- 5. Orange
- 6. Violet

For [CrCl₆]³⁻ the wavelength of most intensely absorbed light is 740 nm, predicted the color of complex?

1. Red

9%

Which of the following would you expect to be **true** for the comparison of d orbital energy between the square planar system and the square pyramidal system?

- 1. d_{z^2} is destabilized for the square pyramidal case compared to square planar.
- 2. d_{xz} and d_{yz} are destablilized for the square pyramidal case compared to square planar.
- 3. $d_{x^2-y^2}$ and d_{xz} are degenerate for square pyramidal.
- 4. a and b are true.
- 5. All of the above are true.

Which of the following would you expect to be **true** for the comparison of d orbital energy between the square planar system and the square pyramidal system?

- 1. d_z2 is destabilized for the square pyramidal case compared to square planar.
- 2. d_{xz} and d_{yz} are destablilized for the square pyramidal case compared to square planar.
- 3. d_{x²-y²} and d_{xz} are degenerate for square pyramidal.
- 56% (2)4. a and b are true.

13%

5. All of the above are true.

MIT OpenCourseWare http://ocw.mit.edu

5.111 Principles of Chemical Science Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.