LECTURE 21

- 1. Using the values of K_b provided, calculate the pH and $[OH^-]$ for each of the solutions below:
 - (a) 0.30 M ammonia ($K_b = 1.8 \times 10^{-5}$)
 - (b) 0.54 M hydroxylamine $(K_b = 1.1 \times 10^{-8})$
- 2. The following reactions are important for buffer creation in biological chemistry labs. Identify the conjugate acid-base pairs.
 - (a) $C_4H_6(OH)_3NH_2$ (aq) + H_2O (l) $\rightleftharpoons C_4H_6(OH)_3NH_3^+$ (aq) + OH^- (aq)
 - (b) $HPO_4^{2-}(aq) + HCl(aq) \rightleftharpoons H_2PO_4^{--}(aq) + Cl^{--}(aq)$
 - (c) CH_3COOH (aq) + H_2O (aq) $\rightleftharpoons CH_3COO^-$ (aq) + H_3O^+ (aq)
- 3. Ketoacidosis is a serious medical condition caused by a build up of ketone bodies. A 0.50 M solution of one of those ketone bodies, acetoacetic acid, is found to have a pH of 1.95. Determine the K_a of acetoacetic acid.

MIT OpenCourseWare https://ocw.mit.edu

5.111 Principles of Chemical Science Fall 2014

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.