In photosynthesis, electrons are transferred from one heme-containing cytochrome (cyt) to another. If the redox potential of a protein called cyt b3 is -600 mV and the redox potential of a protein called cyt f is -300 mV, which of the following is true:

- 1. Cyt b3 is a better reducing agent than cyt f
- 2. Cyt b3 is a better oxidizing agent than cyt f
- 3. The transport of electrons from cyt b3 to cyt f should be spontaneous
- 4. (1) and (3) are true
- 5. (2) and (3) are true

In photosynthesis, electrons are transferred from one heme-containing cytochrome (cyt) to another. If the redox potential of a protein called cyt b3 is -600 mV and the redox potential of a protein called cyt f is -300 mV, which of the following is true:

13%
1. Cyt b3 is a better reducing agent than cyt f

2. Cyt b3 is a better oxidizing agent than cyt f

3. The transport of electrons from cyt b3 to cyt f should be spontaneous

64%
4. (1) and (3) are true

5. (2) and (3) are true

Determine the oxidation number and d-count for $[Fe(H_2O)_6]^{3+}$ and $[Fe(CN)_6]^{3-}$ (Hint: Fe is in group 8 of the periodic table.)

- 1. $[Fe(H_2O)_6]^{3+}$ oxidation number = +3, d-count: 5 $[Fe(CN)_6]^{3-}$ oxidation number = -3, d-count: 11
- 2. $[Fe(H_2O)_6]^{3+}$ oxidation number = +3, d-count: 3 $[Fe(CN)_6]^{3-}$ oxidation number = -3, d-count: -3
- 3. $[Fe(H_2O)_6]^{3+}$ oxidation number = +3, d-count: 5 $[Fe(CN)_6]^{3-}$ oxidation number = +3, d-count: 5

Determine the oxidation number and d-count for $[Fe(H_2O)_6]^{3+}$ and $[Fe(CN)_6]^{3-}$ (Hint: Fe is in group 8 of the periodic table.)

1. $[Fe(H_2O)_6]^{3+}$ oxidation number = +3, d-count: 5 $[Fe(CN)_6]^{3-}$ oxidation number = -3, d-count: 11 2. $[Fe(H_2O)_6]^{3+}$ oxidation number = +3, d-count: 3 $[Fe(CN)_6]^{3-}$ oxidation number = -3, d-count: -3 $[Fe(H_2O)_6]^{3+}$ oxidation number = +3, d-count: 5 $[Fe(CN)_6]^{3-}$ oxidation number = +3, d-count: 5

Select the correct **WEAK FIELD** octahedral crystal field splitting diagram for Co²⁺ (**d**⁷)

Select the correct **WEAK FIELD** octahedral crystal field splitting diagram for Co²⁺ (**d**⁷)

Predict Crystal Field Stabilization Energy (CFSE) Mn³⁺ d⁴ For **High spin** Mn³⁺ d⁴

$$\frac{1}{d_{x^{2}-y^{2}}} \quad \frac{1}{d_{z^{2}}} \quad (e_{g}) \quad \Delta_{O} \quad \frac{1}{5} \Delta_{O}$$

$$\frac{1}{d_{xy}} \quad \frac{1}{d_{xy}} \quad \frac{1}{d_{xz}} \quad (t_{2g}) \quad \Delta_{O} \quad \frac{1}{5} \Delta_{O}$$

- 1. (-3/5)
- 2. $(-8/5)\Delta_0$
- 3. $(-3/5)\Delta_0$
- 4. $-2\Delta_0$
- 5. $(9/5)\Delta_0$

Predict Crystal Field Stabilization Energy (CFSE) For **High spin** Mn³⁺ d⁴

For High spin Mn^{3+} d^4 $\frac{1}{d^{\frac{3}{2}}} \frac{1}{d^{\frac{3}{2}}} \frac{1}{d^{\frac{3}{2}}} (e_g)$

- 1. (-3/5)
- 17% 2. $(-8/5)\Delta_0$
- 69% $\sqrt{3}$. $(-3/5)\Delta_0$
- $4. -2\Delta_{o}$
- 1% 5. $(9/5)\Delta_0$

MIT OpenCourseWare http://ocw.mit.edu

5.111 Principles of Chemical Science Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.