A 15-mL sample of 0.1 M HA (a weak acid) is titrated with 0.3 M NaOH. Calculate the pH with 5 mL of NaOH added past the equivalence point.

This is a _____ problem.

- 1. weak acid in water
- 2. weak base in water
- 3. strong acid in water
- 4. strong base in water
- 5. buffer

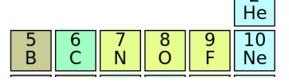
A 15-mL sample of 0.1 M HA (a weak acid) is titrated with 0.3 M NaOH. Calculate the pH with 5 mL of NaOH added past the equivalence point.

This is a _____ problem.

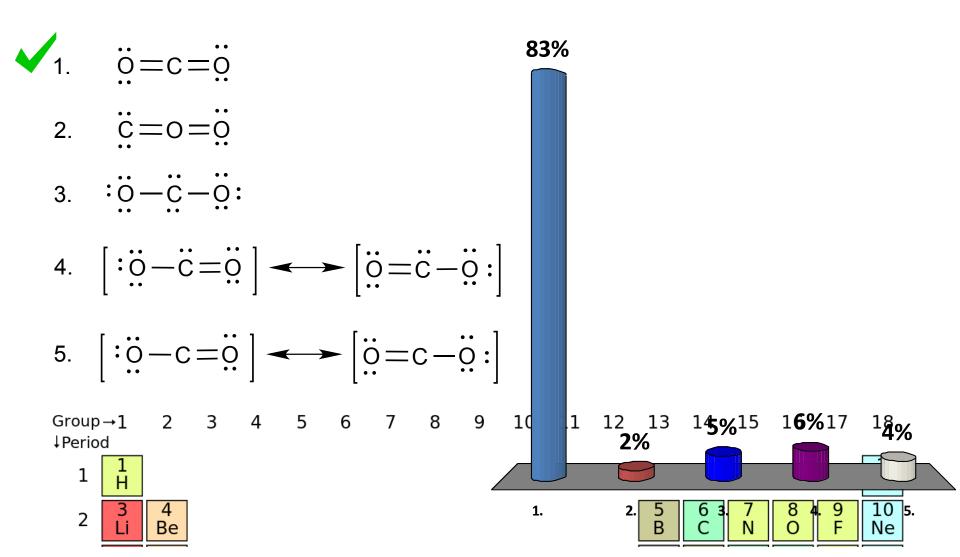
- 1. weak acid in water
- weak base in water
- ¹% 3. strong acid in water
- 63% 4. strong base in water
- 5. buffer

Using the periodic table information below, pick the correct Lewis Structure(s) for CO₂

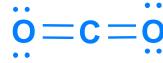
1.
$$\ddot{0} = c = 0$$


2.
$$\ddot{c} = 0 = 0$$

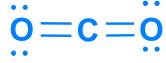
4.
$$\left[\ddot{\circ} - \ddot{\circ} = \ddot{\circ} \right] \leftarrow \left[\ddot{\circ} = \ddot{\circ} - \ddot{\circ} : \right]$$

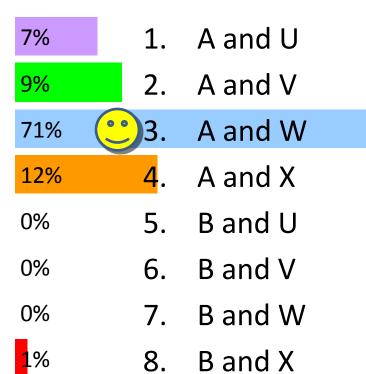

5.
$$\left[: \ddot{\circ} - C = \ddot{\circ} \right] \longrightarrow \left[\ddot{\circ} = C - \ddot{\circ} : \right]$$

Group → 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 \downarrow Period


2 3 Li	4 Be
--------	---------

Using the periodic table information below, pick the correct Lewis Structure(s) for CO₂

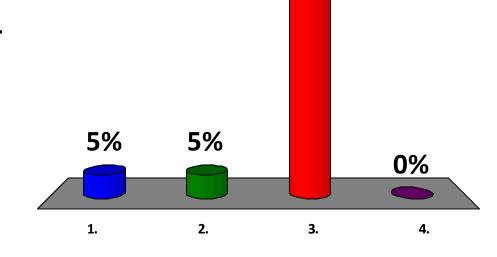

For CO₂ with the Lewis structure which of the following are true:


- A. Geometry is AX₂ and linear
- B. Geometry is AX₄ and bent
- U. The hybridization of C and O are 2sp
- V. The hybridization of C and O are 2sp²
- W. The hybridization of C is 2sp and of O is 2sp²
- X. The hybridization of C is 2sp and of O is none

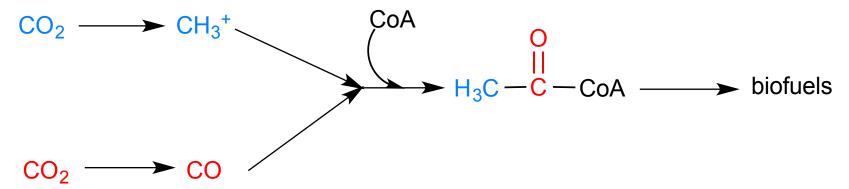
- 1. A and U
- 2. A and V
- A and W
- 4. A and X
- 5. B and U
- 6. B and V
- B and W
- 8. B and X

For CO₂ with the Lewis structure which of the following are true:

- A. Geometry is AX₂ and linear
- B. Geometry is AX₄ and bent
- U. The hybridization of C and O are 2sp
- V. The hybridization of C and O are 2sp²
- W. The hybridization of C is 2sp and of O is 2sp²
- X. The hybridization of C is 2sp and of O is none

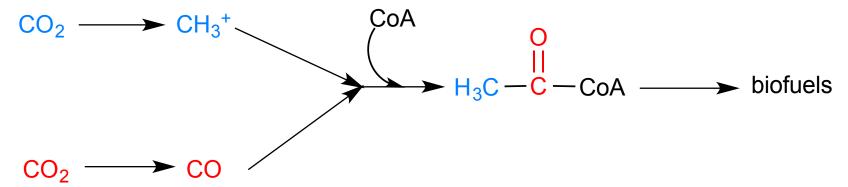


For CO_2 with the Lewis structure $\mathcal{Q} = \mathcal{C} = \mathcal{Q}$ and the information that the χ of C is 2.55 and χ of O is 3.44, which of the following is true:


- CO₂ is a polar molecule: electronegativity difference of C and O is > 0.4
- 2. CO_2 is a nonpolar molecule: electronegativity difference of C and O is > 0.4
- CO₂ is a nonpolar molecule.
 It has polar bonds but no net dipole.
- 4. CO₂ is a polar molecule because it has polar bonds and is linear.

For CO_2 with the Lewis structure $\mathcal{Q} = \mathcal{C} = \mathcal{Q}$ and the information that the χ of C is 2.55 and χ of O is 3.44, which of the following is true:

- CO₂ is a polar molecule: electronegativity difference of C and O is > 0.4
- CO₂ is a nonpolar molecule: electronegativity difference of C and O is > 0.4
- CO₂ is a nonpolar molecule.
 It has polar bonds but no net dipole.
- 4. CO₂ is a polar molecule because it has polar bonds and is linear.



89%

What redox process is happening to carbon of the CO_2 ?

- 1. Both carbons are being reduced from +4 to +2
- 2. The blue C is being reduced from +4 to -2 and the red C is being reduced from +4 to +2
- 3. Both carbons are being oxidized from +4 to +2
- 4. No redox change is happening.

What redox process is happening to carbon of the CO_2 ?

- 1. Both carbons are being reduced from +4 to +2
- \checkmark 2. The blue C is being reduced from +4 to -2 and the red C is being reduced from +4 to +2
 - 3. Both carbons are being oxidized from +4 to +2
 - 4. No redox change is happening.

4%

1%

At physiological pH (7.4), how much folic acid is protonated?

pK_a for folic acid is 4.8.

- 1. More folic acid is protonated than deprotonated.
- 2. More folic acid is deprotonated than protonated.
- 3. The amounts of deprotonated and protonated are about equal.
- 4. Not enough information is provided.

At physiological pH (7.4), how much folic acid is protonated?

pK_a for folic acid is 4.8.

- 1. More folic acid is protonated than deprotonated.
- 2. More folic acid is deprotonated than protonated.

2%

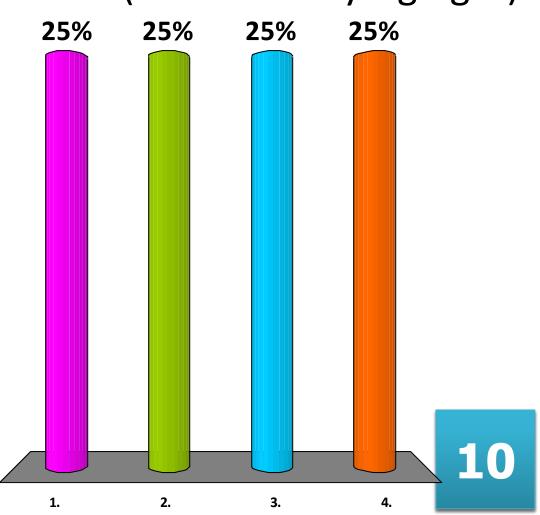
1%

- 3. The amounts of deprotonated and protonated are about equal.
- 4. Not enough information is provided.

Tie-breaker Question 1

25.0 mL of 0.10 M HCOOH with 0.15 M NaOH
$$(K_a = 1.77 \times 10^{-4} \text{ for HCOOH})$$

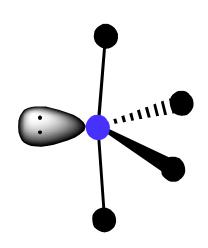
pH = -log [0.00421] = 2.375 (to how many sig figs?)


- 1. 2.4
- 2. 2.38
- 3. 2.
- 4. 2.375

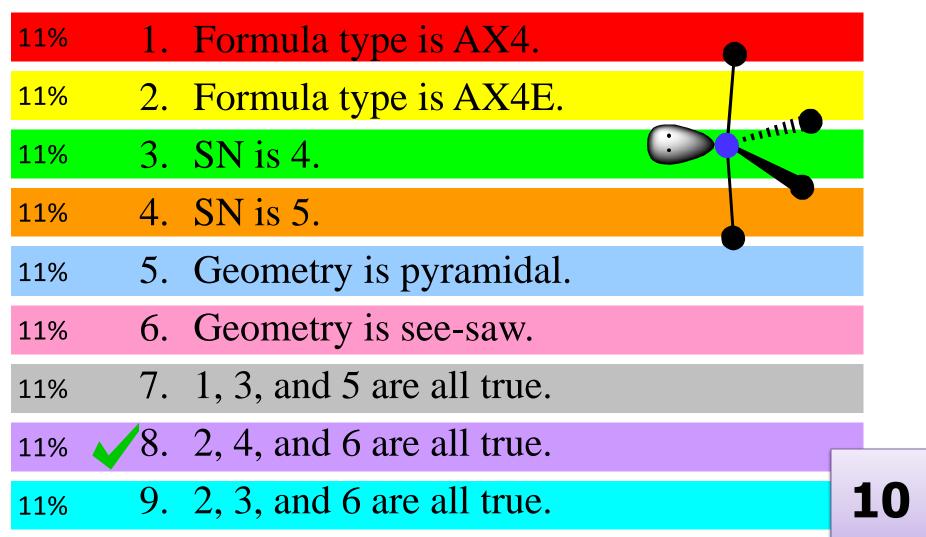
Tie-breaker Question 1

25.0 mL of 0.10 M HCOOH with 0.15 M NaOH $(K_a = 1.77 \times 10^{-4} \text{ for HCOOH})$

pH = -log [0.00421] = 2.375 (to how many sig figs?)


- 1. 2.4
- <u>**</u> 2. 2.38
 - 3. 2.
 - 4. 2.375

Tiebreaker question 2:


Which is true for this structure? Select the most complete true answer.

- 1. Formula type is AX4.
- 2. Formula type is AX4E.
- 3. SN is 4.
- 4. SN is 5.
- 5. Geometry is pyramidal.
- 6. Geometry is see-saw.
- 7. 1, 3, and 5 are all true.
- 8. 2, 4, and 6 are all true.
- 9. 2, 3, and 6 are all true.

Tiebreaker question 2:

Which is true for this structure? Select the most complete true answer.

Indicate which of the following statements about catalysts are true.

- **A)** In an equilibrium process, a catalyst increases the rate of the forward reaction, but leaves the rate of the reverse reaction unchanged.
- **B**) A catalyst is not consumed in the course of a reaction.
- **C**) A catalyst must be carefully chosen to shift the equilibrium toward products.
 - 1. Only statement A is true.
 - 2. Only statement B is true.
 - 3. Only statement C is true.
 - 4. A and B are true.
 - 5. B and C are true.
 - 6. A and C are true.
 - 7. All of the statements are true.
 - 8. None of the statements are true.

Indicate which of the following statements about catalysts are true.

- **A)** In an equilibrium process, a catalyst increases the rate of the forward reaction, but leaves the rate of the reverse reaction unchanged.
- **B**) A catalyst is not consumed in the course of a reaction.
- **C**) A catalyst must be carefully chosen to shift the equilibrium toward products.
- **1.06E-02** 1. Only statement A is true.
- **62%** \(\sqrt{2}. \) Only statement B is true.
- **1**.60E-02 3. Only statement C is true.
- **7%** 4. A and B are true.
- **16%** 5. B and C are true.
- **1.60E-02** 6. A and C are true.
- **8.51E-02** 7. All of the statements are true.
- **2.13E-02** 8. None of the statements are true.

MIT OpenCourseWare http://ocw.mit.edu

5.111 Principles of Chemical Science Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.