Topic: Applying Chemistry Knowledge: A Semester in Review

A look back at the course objectives: My goal is for 5.111 students to have a working knowledge of chemical principles that will allow them to:

- take advanced chemistry classes; carry out a UROP in the chemistry department; employ chemistry in research outside of the chemistry department
- appreciate how chemistry is used to solve real-world problems
- make informed decisions about personal health, environmental and energy issues, and science policy
- advance science and engineering through the application of chemical principles.

A look back at the course topics:

Atomic theory Periodic Table Trends Bonding Structure of Molecules

Thermodynamics Chemical Equilibrium & Solubility Acid-Base Oxidation-Reduction Transition Metals Kinetics Basic properties of matter

How matter reacts

Let's review selective topics using carbon dioxide as a case study.

CO₂ is a waste product of the combustion of fossil fuels. It is a greenhouse gas and thus a player in global warming. It also contributes to the acidification of our oceans. We need to remove it from our environment, but what if we can do one better; use it to make biofuels?

Approaches Include: designing small molecule catalysts to convert CO_2 to biofuels and reengineering biological CO_2 fixation pathways, but before either we do either, we must understand the basic properties and reactivity of our reactant – CO_2 .

Basic Properties of CO₂

BONDING. How is C bonded to O in CO₂? Let's use Lewis structures to make a prediction.

STRUCTURE. What is the geometry a CO₂ molecule? And what is its polarity?

Reactivity of CO₂

THERMODYNAMIC. Is CO_2 stable or unstable compared to its elements?

$$C_{gr}(s) + O_2(g) \rightarrow CO_2(g)$$

To answer this question, one needs to know______.

Given that ______ is - 394.39 kJ/mol, CO₂ is ______.

Let's review what we have learned about CO₂. It has _____bonds, which typically means a big bond dissociation energy.

It is ______, _____ and ______.

With knowledge of our reactant in hand, we next seek to understand how nature "fixes" carbon dioxide (i.e. converts one-carbon units into multi-carbon units). There are six pathways that fix CO₂. One pathway of interest is the microbial acetogenesis pathway.

In acetogenesis, two molecules of CO_2 are added to coenzyme A (CoA) to make acetyl-CoA (a precursor to several multicarbon molecules that can serve as biofuel).

Before scientists can harness microbial acetogenesis to make biofuels, they must understand how it works. *Does acetogenesis require redox reactions? Are some of the reactions acid-base catalyzed? Are transition metals involved? What are the challenging or rate-limiting steps? Which factors influence the chemical equilibrium of each reaction?*

OXIDATION-REDUCTION. Is CO₂ being reduced or oxidized?_______.

 ${\rm CO_2}$ is converted to ${\rm CH_3}^+$ through the action of five different enzymes. How are these carbon units transferred in an efficient manner from enzyme to enzyme? Answer: by attaching them to B vitamin folate (or folic acid) and having the folate shuttle between enzymes.

Folate is a wonderful vehicle for transferring one-carbon units, but after CO_2 is fully reduced to a methyl moiety (CH_3^+) , how is it removed from the folate?

ACID-BASE. Removal of CH₃⁺ from folate requires that folate is protonated. If the pK_a of folate is 4.8, how much will be protonated at physiologically pH?

$$pH = pK_{a} - log \left(\frac{[HA]}{[A^{-}]}\right) \qquad 7.4 = 4.8 - log \left(\frac{[HA]}{[A^{-}]}\right) \qquad \frac{[HA]}{[A^{-}]} =$$

$$pHs above$$

$$the pK_{a}$$

$$pH = pK_{a}$$

$$A^{-} \qquad A^{-} \qquad A^{-}$$

$$pH = pK_{a}$$

$$A \qquad A \qquad A^{-} \qquad A^{-}$$

$$pHs below$$

$$the pK_{a}$$

$$A \qquad A \qquad A \qquad A^{-}$$

$$A \qquad A \qquad A^{-}$$

Removal of the methyl group is challenging given the low pK_a of the folate. How is this challenge overcome? Answer: nature uses a vitamin B_{12} dependent enzyme.

TRANSITION METALS AND CATALYSIS. Methyl transfer from folate has a big E_a barrier. To catalyze this reaction, the highly reactivity +1 oxidation state of an enzyme-bound vitamin B_{12} is used. Enzyme-bound B_{12} removes the methyl group from folate, forming methyl B_{12} .

The corrin ring is a ______dentate ligand

CHEMICAL EQUILIBRIUM

The B_{12} enzyme exists in both OPEN and CLOSED conformations. These conformations are in equilibrium with each other.

The CLOSED state protects the highly reactive B_{12} and the OPEN state allows the B_{12} enzyme to accept the methyl group from a folate molecule, which is bound to a dimeric methyl transferase enzyme (MeTr₂).

The OPEN state also allows for the B_{12} enzyme to donate the methyl group to the enzyme that makes acetyl-CoA (acetyl-CoA synthase).

Next, the B_{12} enzyme must open up again to transfer the methyl group to the enzyme that makes acetyl-CoA. The equilibrium of conformers of the B_{12} enzyme is shifted when the other enzymes and/or the other reactants (like folate) bind.

Enzymes are dynamic. Chemistry is dynamic. CHEMISTRY IN SOLUTION IS COOL!!!!! AND CAN SAVE THE PLANET!!!!!!!!

5.111 Principles of Chemical Science Fall 2014

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.