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5.112 Principles of Chemical Science, Fall 2005 
Transcript – Lecture 8 

All right. 

I am going to start with Friday's lecture notes because there was a 
significant amount on them that I had not finished up yet. We had 
finally gotten to the point where we were talking about what does a 
wavefunction mean, what is the physical significant of it and how does 
it actually represent the presence of an electron? And what we saw 
was that the physically significant representation of the wavefunction, 
if you have some wavefunction psi labeled by three quantum numbers, 
n, l and m. 

And, of course, it is a function of r, theta and phi. The physically 
significant quantity was this wavefunction squared. That wavefunction 
squared that was interpreted as a probability density. The 
wavefunction squared has units. 

It has units of inverse volume. It is a density. It is a probability per 
unit volume. Now, as an aside because someone asked me, I should 
tell you that the more comprehensive definition of the probability 
density is psi not squared, but psi times psi star, where psi star is the 
complex conjugate. 

Because it turns out that some wavefunctions are imaginary functions. 
And so, if you took an imaginary function and squared it, then you 
would still get an imaginary function after it. And then it is hard to 
interpret an imaginary function as a probability density. 

And so the more comprehensive definition is psi times psi star where 
psi star is the complex conjugate of psi. And, when you multiply psi by 
psi star, if psi is a complex function, well, then you get a real function. 

This is the more comprehensive definition of the probability density, 
psi times psi star. We won't use that. I just wanted to let you know 
about it. So, probability density. Not only do we want to know 
something about the probability density. 
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We also want to know something about the probability of finding the 
electron some distance away from the nucleus. And, to do that, what 
we were talking about was this quantity, this radial distribution, the 
radial probability distribution. 

And what that is, is the probability of finding an electron in a spherical 
shell of radius r and distance or thickness dr. For example, if this gray 
portion here represented the probability density of the 1s wavefunction 
in our dot density diagram. 

Remember we squared the wavefunction, got the probability density 
and then represented it with a dot density diagram where the density 
of the dots was proportional to the value of the wavefunction squared? 
And, in the case of the 1s wavefunction, we saw that the probability 
density was largest right at r=0, and that is exponentially decayed in 
all directions uniformly. 

That is what that gray part represents. But now this blue here is my 
spherical shell. It has a radius r and it has a thickness here dr. And 
the radial probability distribution is asking, what is the probability of 
finding the electron in this spherical shell? And that spherical shell has 
a thickness dr. 

Another way to ask that is the probability of finding the electron 
between r and r was dr. That is what we wanted to know, and that is 
what the radial probability distribution tells us. Now, how do you get a 
value out of that? How do you actually calculate the radial probability? 
Well, to do that, what we have to know is this volume here of the 
spherical shell. 

The volume of this spherical shell is just the surface area of that 
spherical shell, 4 pi r squared, and the volume is times the thickness 
dr. It is a very thin shell. It is an infinitesimally thin shell of thickness 
dr. 

Well, if we know that volume then what we can do is take our 
probability density, psi squared, which has units of probability per unit 
volume. And we are multiplying it here by r unit volume. The unit 
volumes cancel and we are left with a probability. 

So, that is our probability of finding that electron in a shell of radius r 
and a thickness dr. Let's look at the result of calculating the radial 
probability distribution for the 1s wavefunction. What did I do? I took 
psi squared for the 1s wavefunction at some value of r, then I 



multiplied it by 4 pi r squared dr, and I did that for many different 
values of r and plotted the result here. 

That is what that radial probability is as a function of r. Well, the first 
thing you see is that the most probable value of r, or the value of r 
where the electron has the highest probability of being is at this value 
aO. 

The most probable value of r is this value aO. aO is what we call the 
Bohr radius. And today, in a moment or so, I will tell you why it is 
called the Bohr radius. It has a numerical value of 0.529 angstroms. 

And so it is most likely that the electron is about a half an angstrom 
away from the nucleus making then the diameter of the hydrogen 
atom, on the average, a little bit over one angstrom. That is how we 
think about the size of a hydrogen atom is to take this most probable 
value of r and double it to get the diameter. 

The most probable value of r, or the most probable distance of the 
electron from the nucleus is half an angstrom away. The most 
probable distance of the electron from the nucleus is not r=0 because 
the radial probability here is zero at r=0. 

That seems a little strange because the other day we plotted the 
probability density for the 1s wavefunction. And, when we did that, 
here is psi 100 squared versus r, what we saw was that the probability 
density was some maximum value at r=0 and that it exponentially 
decayed with increasing r. 

And that is the case. Probability density for the s-wavefunctions is a 
maximum at r=0. But the radial probability here is actually zero at 
r=0. Why? Look at how we defined that radial probability here. 

It is psi squared times this volume element. Our volume element is 
this spherical shell. And, at r=0, the spherical shell goes to a volume 
of zero. So, our radial probability here is equal to zero at r=0. 

That is really important that you understand that this radial probability 
here is always going to be zero at r=0 for all of the wavefunctions that 
we are going to look at. And we will talk about this a little bit more, 
the fact that the electron is about a half an angstrom away from the 
nucleus. 



But before I do that, I also just want to point out that in your 
textbook, and sometimes in the notes, that sometimes radial 
probability is actually written as the following. It is written as the r 
squared, the distance variable, times the radial part of the 
wavefunction. 

That is the radial part squared. We talked about the radial and the 
angular part last time. And the radial part is labeled on by two 
quantum numbers, n and l. And so, for the 1s, that is n=1, l=0. 

Where does this come from? Well, let me just emphasize or example 
where this comes from. This radial probability distribution here, we 
said for the s-wavefunctions, was psi squared. You could take psi 
squared, the probability density and multiply it by this unit volume or 
the volume of the shell, 4 pi r squared dr. 

Let's write that out again, but write it out now so that we write out psi 
squared in terms of the radial part and the angular part. Remember 
we said last time, for the hydrogen atom wavefunctions, that psi is 
always a product of a factor only an r, which was the radial part, and a 
factor only in theta and phi, which are the angular parts. 

Now, what you also have to remember in looking at this is that the 
angular part for the 1s wavefunctions, 2s, 3s, all s wavefunctions, was 
equal to 1 over 4 pi to the Ω. If you square that, you are going to get 
1 over 4 pi. 

Therefore, the 4 pi here are going to cancel for the 1s wavefunctions. 
And what you are going to have left is this r squared times just the 
radial part dr. That is why the y-axis in your book is sometimes labeled 
this way for the radial probability distribution. 

But this is also important because if you were calculating the radial 
distribution function for something other than an s wavefunction. The 
way you would do it is to take just the radial part of that wave function 
times r squared, or just the radial part of that wavefunction and 
evaluation it at that value of r times r squared dr. 

You could not, for the other wavefunctions, take psi squared times 4 pi 
r squared dr. And that is because the angular part for the other 
wavefunctions that are not spherically symmetric is not the square 
root of 1 over 4 pi. 



This is a broader definition for what the radial probability distribution 
function is. It just works out, in the case for the s-wavefunctions, 
these 4 pi cancel. And so you can write the radial probability for the s 
wavefunctions like that. 

So, those are just some definitions. I want to talk some more about 
this radial probability distribution function here for the 1s 
wavefunction. I want to talk about it and also explain why aO is called 
the Bohr radius. 

The reason for that is the following. The nucleus was discovered in 
1911, the electron was known before that, and Schrödinger did not 
write down his wave equation until 1926. And, in between that 1911 
to 1926, the scientific community was working really very hard to try 
to understand the structure of the atom. 

And we saw how the classical ideas, as predicted, would live a 
whopping 10 to the minus 10 seconds. And one of the people who 
were working on that problem was Niels Bohr. And, in 1919, Niels 
Bohr of course realized that classical physics fails this kind of planetary 
model for the atom where you put the nucleus in the center and the 
electron is going around that nucleus with some fixed orbit. 

We will call it r. Well, he knew that it was not going to work, that those 
classical ideas predicted that this would plummet into the nucleus in 
10 to the minus 10 seconds. But, he said, obviously that does not 
happen so let me just forget classical physics at the moment. 

Then what he did was to impose some quantization on this classical 
model for the hydrogen atom. And the reason he got this idea of 
quantization is because he already knew the hydrogen atom emission 
spectrum. 

He knew that in the hydrogen atom emission spectrum that light of 
only certain frequencies was emitted. That is there was some idea 
that there was something about this hydrogen atom that is quantized. 

He said, well, let me just ignore classical physics for a moment. Let 
me give this a circular orbit. But let me quantize something about this 
hydrogen atom. And, in particular, what he went and did was 
quantized the angular momentum of that electron. 

He kind of just pasted the quantization onto a classical model for the 
atom, because he is trying to work toward explaining what the 



observations were. When he pasted that quantization onto this classic 
model, he was able to calculate a value of r. 

And that value of r is what we call the Bohr radius aO and has the 
value 0.529 angstroms. That came out of it. And if you calculate for 
the radial probability distribution function for this model, which is 
called the Bohr atom, would be one where that radial probability is one 
right here at r= aO. 

In Bohr's model, the electron had a well-defined precise orbit. The 
value of r at which it went around the nucleus was given by aO. He 
knew exactly where the electron was in his model. This kind of model, 
which is this classical model, really, is what we call deterministic. 

It is deterministic because we know exactly where the particle, in this 
case the electron, is. I want you to contrast it with the quantum 
mechanical result from the Schrödinger equation. What you see, in 
the quantum mechanical result, is that we don't really know where the 
electron is, so to speak. 

The best we can tell you is a probability of finding the electron at some 
value r to r plus dr. That is the best we can do because quantum 
mechanics is non-deterministic. There is a limit to which we can know 
the position of a particle. 

That limit is given by something called the uncertainty principle. The 
uncertainty principle is not something we are going to discuss, but it 
tells us that there is a limit to which we can know both the position 
and the momentum of a particle. 

And that is the basis for why here we have a probability distribution 
and knowing sort of where the electron is. We don't exactly know 
where the electron is here. This is the classical model on which Bohr 
just kind of pasted the quantization of the angular momentum of the 
electron onto it. 

In the case of the Schrödinger equation, the quantization drops out 
when you solve the differential equation. It comes out of the equation 
just naturally. We did not paste it onto it. We did not make an ad hoc 
kind of representation. 

That is the big difference here between quantum mechanics and 
classical mechanics. In quantum mechanics, it can only tell you about 



a probability. It cannot tell you exactly where the particle is going to 
be. 

Questions on that? OK. Anyway, this value aO, that is why it is called 
the Bohr radius. And then it turns out, quantum mechanically, that 
this value of r, the most probable value of r is, in fact, exactly aO. 

In a sense, Bohr was pretty lucky. And this is kind of an accident that 
he got aO out of this, and it has to do with the actual form of the 
Coulomb interaction. But, of course, this doesn't work for anything 
else other than a hydrogen atom. 

Whereas, the Schrödinger equation, as we are going to see in a 
moment, is applicable to all the atoms that we know about. So, that is 
the radial probability distribution function for the 1s atom, for the 1s 
state. 

We want to take a look at the radial probability distribution for 2s and 
for 3s. Let me plot those. And you can actually put these lights on 
here. That is OK. I am going to use this board for a moment. 

Here is the radial probability distribution function. I can write it as 
little r times R20 squared of r, or RPD. This is for 2s versus r. And 
when I do that I get a function that looks like this. And, if I evaluate it 
here, what is this value of r at which the probability is a maximum? 
Well, this most probable value of r is 6aO. 

Look at that. The most probable value of r for 1s was aO. In the case 
of the 2s state here, the electron, the most probable value is 6aO, six 
times as far from the nucleus. If you have a hydrogen atom in the 
first excited state, in a sense that hydrogen atom is bigger. 

It is bigger in the sense that the probability of you finding the electron 
at a larger distance away from the nucleus is larger. And that, in 
general, is the case. The radial probability distribution here also 
reflects the radial node that we talked about last time. 

That radial node is r= aO. Radial node is the value of r that makes 
your wavefunction go to zero. Notice again that this radial probability 
distribution function right here is zero at r=0. This is not a node. 

This is not a radial node. This is a consequence right here of our 
definition for the radial probability. Our volume element has gone to 



zero. r=0 is never a radial node in any way function. What about 3s? 
Well, let's plot 3s. 

Here is 3s. This is the radial probability distribution. I take psi for 3s 
and square it, multiply by 4 pi r squared dr, and do so for all the 
values of r, and I am going to get something that looks like this. 

Now this most probable value of r here, where the 3s wavefunction is 
equal to 11.468aO. For the second excited state of a hydrogen atom 
that electron, on the average, is 11.5 times farther out from the 
nucleus than it is in the case of the 1s state right here. 

Again, for that second excited state, that hydrogen atom is bigger in 
the sense that the probability of it being farther away from the nucleus 
is larger. That radial probability distribution of the 3s also reflects the 
two radial nodes in the 3s wavefunction. 

The radial nodes are at 1.9aO here and 7.1aO. Again, the value here 
at r=0 is not a radial node. Now, as you look at this, it is tempting to 
ask the following question. You might want to ask if the electron can 
be at these values of r and it can be at these values of r and it can be 
at these values of r, how does the electron actually get from here to 
here to here if right at r=1.9aO and 7.1aO the probability is equal to 
zero? Well, you might say maybe this probability isn't exactly zero. 

It is something small. But I am telling you that it is zero, goose egg, 
zilch, zippo, nada, cipher, nix, not. Anybody else have another name? 
Nil. It is nothing. It is zero. How do you answer that question? Well, 
it turns out, of course, that it isn't an appropriate question. 

And the reason it is not is because that question is asked in the 
framework of classical mechanics. When you ask how does a particle 
get from one place to another, you are asking about a trajectory. 

You are asking about a path. Particles over here, over here, over 
here, how does it get from one place to another? And, in quantum 
mechanics, we don't have the concept of trajectories. Instead, what 
we have to think of is the electron as a wave. 

And we already know that a wave can have amplitude simultaneously 
at many different positions. And so it has simultaneous amplitude or 
probability here, here and here all at the same time. We cannot talk 
about trajectories anymore. 



And that, again, ties into the uncertainty principle, our inability to 
know exactly the position and the momentum of a particle at any 
given instance. The best we can tell you is a probability. We have to 
change the way we think about electrons. 

You cannot cast them in the framework of your everyday world. This 
is part of our world, but you have to go do a specific type of 
experiment to see this part of the world. That is why it seems so 
strange to you, because it is not part of your everyday experience. 

But this world works with different rules that you really do have to 
accept that it just works differently. Questions? Now I am going to 
stop talking about the s wavefunctions and move on to talk about the 
p wavefunctions. 

With the s wavefunctions, we talked about the significance of the 
wavefunction, probability density, radial probability distribution. We 
talked about what a radial node was. Now it is time to move onto the p 
wavefunctions. 

And the p wavefunctions, of course, are not spherically symmetric. 
And to represent them, we are going to do our dot density diagram 
again. We are going to take the wavefunction and square it to get the 
probability density and then plot that probability density as a density 
of dots. 

We the dots are most dense, well, that means the highest probability 
density. Here is the result for the pz wavefunction. It is pz because 
you can see the highest probability here is along the z-axis. 

It is symmetric along the z-axis. Here is the probability density for the 
px wavefunction. You can see that the probability density is greatest 
along the x-axis. It is symmetric along the x-axis. And, if you look 
really carefully, you can see that there is no probability density in the 
yz plane for the px wavefunction. 

And, over here, if you look carefully, you can see that there is no 
probability density in the xy plane for the pz wavefunction. And here is 
a py wavefunction, the probability density of it. The probability 
density is concentrated along the y-axis. 

It is symmetric along the y-axis. And, if you look very carefully, there 
is no probability density here in the xz plane. Well, the fact that there 



is no probability density here in the xy plane, in the case of pz, 
indicates that we have an angular node. 

An angular node at theta equal 90 degrees. An angular node is the 
same thing as a radial node in the sense that it is the value of the 
angle that makes the wavefunction be equal to zero. Here is the 
wavefunction for pz. 

You can see that when theta is equal to zero, this wavefunction is 
going to be equal to zero. An angular node is the value of theta or phi 
that makes the wavefunction be zero. And the consequence then is 
that we have a nodal plane, because everywhere on the xy plane theta 
is equal to 90 degrees. 

For the px wavefunction, the value of the angle that gives you that 
nodal plane is phi equal 90. That means everywhere in the yz plane is 
phi equal to 90. In the case of py, when phi is equal to zero, well, that 
is everywhere in the xz plane. 

Everywhere in the xz plane phi is equal to zero. So, that is the 
angular nodes. In general, and this is something you do have to know, 
an orbital has n-1 total nodes. And what I mean by total nodes is 
angular plus radial nodes. 

The number of angular nodes is given by this quantity l. The quantum 
number l that labels your wavefunction always gives you the number 
of angular nodes. Therefore, if n-1 is the total and l is the number of 
angular, well, then the number of radial nodes is n-1-l. 

This is something that you do have to know. If I give you a 
wavefunction and ask you how many radial and angular nodes it has, 
you need to be able to calculate that, and vice versa. Sometimes I will 
tell you a function has three radial nodes and six or seven angular 
nodes or something, what is the wavefunction? So, we go both ways. 

Well, I also want to take a look at the radial probability distribution 
functions for the p wavefunctions. We looked at it for the s 
wavefunctions already. I actually want to contrast the radial 
probability distribution, say, for 2p, here it is, with that 2s that we 
looked at a moment ago. 

Remember, how do you get the radial probability distribution function 
here for 2p? It is the radial part of the 2p wavefunction times r 



squared dr. It gives me the probability of finding the electron a 
distance between r and r plus dr. 

Again, what you see is that at r=0 that is zero. That is not a radial 
node. But what I really want to point out here is that the most 
probable value of r, for the 2p wavefunction, is actually smaller than it 
is for the 2s wavefunction. 

That is, it is more likely for the electron in a 2p state to be a little 
closer into the nucleus than it is for the 2s state. In general, as you 
increase the angular momentum quantum number, the most probable 
value of r gets smaller for the same value of n. 

Similarly, here is the 3s radial probability distribution function that we 
looked at. Here is a radial probability distribution for 3p. Now, with 
the 3p, you can see the value of the radial node. You can see the 
radial probability distribution reflects a radial node here. 

And here is the radial probability distribution function for 3D. We did 
not look at the probability density of 3D. You will do that with 
Professor Cummings when you talk about transition metals. But here I 
just drew in the radial probability distribution for 3D. 

But the point again that I want to make is here is the most probable 
value of r for 3s, here it is for 3p, here it is for 3D, again, the most 
probable value for 3D is smaller than it is for 3p, than it is for 3s. 

Again, as you increase the angular momentum quantum number, that 
most probable value gets smaller. However, ironically if you actually 
look at the probability of the electron being very, very close to the 
nucleus, that probability is only significant for the s wavefunctions. 

Look at the 3s wavefunction. Here you see that you really do have 
some probability very close to the nucleus. You don't see that in the 
3p wavefunction. You certainly don't see that in the 3D wavefunction. 

Again, in the 2s wavefunction, you have some significant probability of 
the electron being really close to the nucleus, but you don't in 2p. 
That is important. And it seems in contradiction to the fact that on the 
average the most probable value of r gets smaller as l gets larger. 

These two facts that look contradictory are important. They dictate 
the behavior of atoms. These two facts seem like kind of loose 



threads at the moment in the sense that you are probably wondering 
why I am telling you what I am telling you. 

But we are going to use that information in a few days and you will see 
really the significance of this plot. And this plot will be an important 
one for you to refer back to. Yes? Probably. I am not exactly sure of 
the picture you drew in high school, but yes. 

If the electron in general is further out from the nucleus that is a 
higher energy state. The electron is less strongly bound, as we are 
going to see in the multi-electron atoms here. Oh, no. For the 
hydrogen no. 

Let me explain that. For the hydrogen atom, the energies are only 
dictated by the n quantum number, so 3s, 3p, 3D all have the same 
energies. Where the energies become degenerate is with a multi-
electron atom. 

And we are going to talk about that and how that reflects here these 
wavefunctions in the next day. That is all I am going to say about the 
hydrogen atom. Now it is time to move onto helium. And, of course, 
the Schrödinger equation predicts the binding energies of the electrons 
to the nucleus in a helium atom also very well. 

But, of course, it is a much more complicated Schrödinger equation. 
And I am not even going to write out the Hamiltonian in this case, but 
I want to show you the wavefunction here. See the wavefunction? 
The wavefunction is a function of six variables. 

It is a function of two r's, two distances from the nucleus, one for 
electron one, one for electron two, two theta's and two phi's. We have 
six variables for the wavefunction. And the consequence of this is that 
our solutions for the binding energies for the electrons in helium or 
any other atoms are not going to be nice analytical forms. 

We are no longer going to have e sub n equal minus the Rydberg 
constant over n squared. If you actually solve for those energies, and 
you have to do it numerically, you are just going to get a list of 
numbers, a table of numbers, but not a nice analytical form. 

If you solve for the wavefunction, you are not going to get a nice 
analytical form like we got for hydrogen. Instead, what you will get is 
a value for the amplitude of psi as a function of r, theta and phi. 



But if you get actually much above three electrons, it turns out that 
even numerically you cannot solve the Schrödinger equation exactly. 
You have to use approximations. And we are going to look at the most 
basic approximation that is used that works, amazingly. 

It works well enough for us to have a framework in which to 
understand the reactions of these atoms. And what is that 
approximation? Well, that approximation is called the one electron 
wave approximation or the one electron orbital approximation. 

What does that mean? Well, that means this. I am going to take my 
wavefunction here for the helium atom which strictly is a wavefunction 
that is a function of six variables, and I am going to separate it. 

I am going to let electron one have its own wavefunction and electron 
two have its own wavefunction. That is an approximation. In 
addition, what I am going to do is let the wavefunction for electron one 
have a hydrogen-like wavefunction. 

I am going to say that it has the 1s wavefunction, or the psi 1-0-0 
wavefunction of a hydrogen atom. And I am going to let electron two 
have the psi 1-0-0 wavefunction of a hydrogen atom. Or, I am going 
to write it as 1s of 1, for electron one, times 1s of 2, for electron two. 

Or, another shorthand, I am going to write it as 1s squared. And, if I 
continued on here, it is for lithium. Lithium, the wavefunction strictly 
has nine coordinates, but I am going to let every one of those 
electrons, in the one electron wave approximation, have its own 
wavefunction. 

And I am going to let electron one have a wavefunction that looks like 
a hydrogen atom wavefunction. The 1s wavefunction. The same thing 
with electron two. And then I am going to let electron three have the 
2s wavefunction of the hydrogen atom. 

And in simplified notation, that is just 1s squared 2s. And here is 
beryllium, 16 variables, but I am going to let every electron have its 
own wavefunction. And I am going to give electron one the 1s 
wavefunction, electron two the 1s, electron three the 2s, electron four 
the 2s. 

I can also write that, as you have already done, 1s2, 2s2. And I can 
keep going. And these electron configurations that you have been 
writing down in high school, that is what they are, electron 



configurations, well, they are nothing more than our shorthand 
notation for the electron wavefunctions within this one electron wave 
approximation. 

That is what those were that you were writing down. Those were a 
shorthand notation for the wavefunctions in Schrödinger's equation 
within this one electron wave approximation. Now, one thing you do 
notice is that I did not, in the case of boron here, let all five electrons 
be in the 1s state, or let all five electrons be represented by a 1s 
hydrogen atom wavefunction. 

I didn't because of a quantity that you already know about called spin. 
You already know that if you are going to put electrons in the 1s state 
here that one electron has to go in with spin up and the other spin 
down. 

And the 2s, spin up and spin down, etc. What is the phenomenon 
called spin? Well, spin is entirely a quantum mechanical phenomena. 
There is no correct classical analogy to spin. Spin is intrinsic angular 
momentum. 

It is angular momentum that is just part of a particle, such as an 
electron. The spin quantum numbers actually come from solving the 
relativistic Schrödinger equation, which we did not even write down. 

When you solve the relativistic Schrödinger equation, out drops a 
fourth quantum number. That fourth quantum number we are going 
to call m sub s. And we find that m sub s has two allowed values. One 
of those values is Ω and the other is minus Ω. 

Here we have a case where the quantum number is not an integer. It 
is Ω and it is minus Ω. Now, if it helps you to think about the electron 
spinning around its own axis, like I depict here, well, if that is the case 
then the angular momentum quantum number is perpendicular here to 
this plane in which it is rotating. 

And you might want to call that spin up. And, of course, if it is 
spinning in the other direction, well, then the angular momentum 
vector is pointed in the opposite direction. You might want to call this 
spin down. 

If it helps for you to think about this, OK, but remember that this is 
not correct. This is a classical analogy that we are trying to draw here. 
We are trying to say that this electron is rotating around its own axis. 



That is not true. This angular momentum is just an intrinsic part, the 
intrinsic nature of a particular such as an electron. Next time, I will 
tell you about Uhlenbeck and Goudsmith. See you Wednesday. 


