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Recent Lectures 

Non-degenerate Perturbation Theory vs. Variational Method 

For NDPT
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Basis Set is, in principle, Infinite 

For exactly solved problems all basis states, zero-order energies, and matrix elements of 
H(1) are known. 

For 1/rij problems the matrix elements are too large and also difficult to evaluate. 

It is important to choose an appropriate H(0). 
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Non-Degenerate Perturbation Theory is good for: 

• Local effects (accidental degeneracy): a “perturbation” 

• Tunneling is encoded as an odd vs. even symmetry level shift 
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• Fitting formulas for energy levels sample V (x) 

• Eigenvectors. Very important. Enable calculation of effects other than energy levels. 
Transition probabilities. R–dependence of many effects. 

Variational Method 

LCAO–MO 

�
�
�
�
� 

finite (small) basis set H
H
H
H
H Hückel Theory 

LCAO–MO: derive molecular properties from atomic properties, as understood in the 
Periodic Table. For H2

+, got Re. For A2, got standard MO diagram. For AB, get polar 
bonding. Use Non-Degenerate Perturbation Theory to estimate fractional contribution from 
atom A vs. atom B in each MO. 

Bonding/anti-bonding proportional to overlap S, at small values of Sij . Use AO ionization 
energy to estimate orbital size. Use orbital sizes to estimate Sij. 

Hückel Theory: Usually use fixed geometry. The key parameters are α, β. Know how 
α, β depend on orbital ionization energy and orbital size. Hückel Theory allows prediction 
of many properties and inter-molecule comparisons. 

Eigenvectors are very important, especially in interpretation of reactivity properties via 
resonance structures. 
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Resonance Structures are expressed by special values of α (and β) for hetero-atoms 
[predicted by atomic orbital ionization energies] and are encoded in the eigenvectors for the 
lowest energy electronic state. Some amplitude of the resonance form is admixed into the 
electronic ground state and is evident in values of bond–order and atomic charge computed 
from the occupied molecular orbitals. 

Large Basis Set Quantum Chemical Calculations 

These give accurate results for almost any property. Often it is best to assemble insights 
from very low-level calculations (LCAO-MO or Hückel) and then test these using accurate 
Quantum Chemical calculations. Keep in mind that the numerical accuracy of Quantum 
Chemistry can be secondary to insight-generation. This is done by clever comparisons of 
systems. 
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Universal Theory of Intermolecular Interactions 

Consider the interaction between two stable molecules (e.g. water and ethanol) or equiva-
lently between two noble gas atoms (e.g. helium and neon). Call the two species “A” and 
“B”, and suppose they are oriented as 
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INTERMOLECULAR INTERACTIONS  
Consider the interaction between two stable molecules (e.g. water and 
ethanol) or equivalently between two noble atoms (e.g. helium and neon). Call 
the two species “A” and “B”, and suppose they are oriented as    

 
Now, according to our simple MO pictures, there will not be any chemical 
bonds between A and B; the MOs will be fairly localized either on A or on B 
and we should not have significant hybridization of the orbitals.  Thus, 
according to the MO picture, these molecules will not interact.  However, we 
know that they do interact.  If they did not, we would never be able to form 
liquids or solids, as it is the attraction between molecules that holds such 
things together.  Of course, our intuition also tells us that the interactions 
between molecules are much weaker than the forces that hold molecules 
together, and so we immediately guess that the intermolecular interactions 
can be treated as a perturbation. 
 
Toward this end, we write the Hamiltonian for the A-B system as: 

� 

ˆ H = ˆ H A + ˆ H B + ˆ V AB 
where 

� 

ˆ H A  (

� 

ˆ H B) describes the isolated interactions within molecule A (B) and 

� 

ˆ V AB contains all the interaction terms between A and B. Now, 

� 

ˆ V AB is a fairly 
complicated object: it contains all the interactions between electrons and/or 
nuclei on A and electrons and/or nuclei on B.  Rather than deal with the full 

� 

ˆ V AB (which would be very hard) we will note that as long as A and B are far 
apart (i.e. as long as R is large) we can approximate 

� 

ˆ V AB using a classical 
dipole-dipole interaction 

� 

ˆ V AB ≈
R2 ˆ µ A ⋅ ˆ µ B − 3 ˆ µ A ⋅R( ) R ⋅ ˆ µ B( )

4πε0R5     Eq. 1 

Here, 

� 

ˆ µ A  (

� 

ˆ µ B)is an operator that measures the dipole moment on molecule A 
(B).  We won’t particularly care about the form of this operator in this 
lecture, but we will use it quite a bit later on.  For reference, 

µ̂A ≡ e r̂ − RA( )− µA
Nuclear  

The first part measures the dipole moment of the electron charge 
distribution, while the second subtracts the dipole of the nuclear charges.   
 

RA, RB are laboratory frame coordinates of molecule A and molecule B. 

Now, according to our simple MO pictures, there will not be any chemical bonds between A 
and B; the MOs will be fairly localized either on A or on B and we should not have significant 
hybridization of the orbitals. Thus, according to the MO picture, these molecules will not 
interact. However, we know that they do interact. If they did not, we would never be able to 
form liquids or solids, as it is the attraction between molecules that holds such things together. 
Of course, our intuition also tells us that the non-bonded interactions between molecules are 
much weaker than the forces that hold molecules together, and so we immediately guess that 
the intermolecular interactions can be treated by perturbation theory. 

Toward this end, we write the Hamiltonian for the A–B system as: 

Hb = Hb A + Hb B + VbAB 

where Hb A ( b VABHB ) describes the isolated interactions within molecule A (B) and b contains ball the interaction terms between A and B. Now, VAB is a fairly complicated object: it 
contains all the interactions between electrons and/or nuclei on A and electrons and/or 
nuclei on B. Rather than deal with the full VbAB (which would be very difficult) we will note 
that as long as A and B are far apart (i.e. as long as R is large) we can approximate VbAB 

using a classical dipole-dipole interaction 

b R2µ̂A · µ̂B − 3(µ̂A · R)(R · µ̂B )VAB = . (1)
4πε0R5 
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Here, µ̂A (µ̂B ) is an operator that measures the electric dipole moment on molecule A (B). 
We won’t particularly care about the form of this operator in this lecture, but we will use it 
quite a bit later on. For reference, 

Nuclear µ̂A ≡ e(r̂ − RA) − µA . 

The first part measures the dipole moment of the electron charge distribution, while the sec-
ond subtracts the dipole moment of the nuclear charges. Now, Eq. (1) is still too complicated 
for us. The dipole is a vector quantity – it has a magnitude and a direction. As a result, the 
dipole-dipole interaction depends on the relative orientations of the dipoles involved: 

µA µB E 
� � −µAµB 

attractive 
2πε0R3 

? 

6 −µAµB 

4πε0R3 
attractive 

+µAµB6 6 repulsive 
4πε0R3 

+µAµB 
- � repulsive 

2πε0R3 

While the orientation dependence of the µA − µB interaction can be important in many 
situations, we will not be interested in this level of detail for now. Hence, we will assume 
that the molecular dipoles are oriented in their most energetically favorable head-to-tail 
orientation (the first situation above) in which case 

µbAµbBbVAB ≈ − 
2πε0R3 

where the non-boldface operator µbA (µbB) returns the magnitude of the dipole moment on 
A (B). In practice, this will overestimate the true interactions, because sometimes the 
dipoles will be in less energetically favorable orientations relative to one another, but this 
will suffice for qualitative purposes. 

Next, we split the Hamiltonian into a zeroth-order part and a perturbation term in the 
logical way: 

H(0) H(1)b b b b b= HA + b = = VAB .HB , V 
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Because the zeroth-order Hamiltonian is separable, we immediately recognize that the zeroth 
order eigenstates will factorize as products, and that the energies will add: � � � � 

H(0)ΨA b ΨA EA ΨAb ΨB HA + Hb B ΨB + EB ΨB
β .= = α β α β α β α 

α and β are quantum numbers for A and B respectively. The reason we have two quantum 
numbers here instead of just one is exactly the same as why we had two quantum numbers 
(nx and ny) for the 2D harmonic oscillator: when we increase the number of degrees of 
freedom, we always introduce new quantum numbers. In the present case, when α = 7 and 
β = 3, we are looking at an excited state where molecule A is in its seventh excited state 
and B is in its third excited state. It isn’t sufficient to consider only excited states of A or B 
individually — one also must allow for the possibility that both molecules might get excited 
at the same time. That being said, in chemistry we are usually interested in the ground 
electronic state of the system. For the A-B system, the ground state implies that both A 
and B are in their ground state, in which case 

(0) (0)
ΨB = EA + EBΨ0 = ΨA 

0 0 E0 0 0 . 

Now, as discussed above, this zeroth–order energy does not contain any interactions between 
A and B. It is easy to see this in the equation because there are no terms that depend on 
A and B simultaneously. Thus A doesn’t know that B exists, and vice versa. As a result, 
in zeroth-order the molecules will never stick to one another. 

To introduce interactions, we apply perturbation theory. At first–order, we have: ZZ ZZ 
E0

(1) 
= Ψ0 

A∗ Ψ0 
B∗ VbABΨ0 

AΨ0 
BdτAdτB = 

−1
Ψ0 

A∗ Ψ0 
B∗ µbAµbBΨ0 

AΨ0 
B dτAdτB

2πε0R3 Z Z 
ΨA∗ ΨB∗ = 

−1 
0 b 0 dτA µBΨ

B 
0 dτBµAΨ

A 
0 b

2πε0R3 

where on the second line we have grouped terms so that the integral clearly factorizes into 
a product of an integral over A and an integral over B. These two integrals have physical 
meaning: Z 

ΨA
0 
∗ µbAΨ

A 
0 dτA ≡ hµbAi (The ground state dipole moment of A) Z 

ΨB∗ 
0 µbB Ψ0 

BdτB ≡ hµbB i (The ground state dipole moment of B) 

Thus, the first–order energy takes on an intuitive form: 

(1) −hµbAi hµbB i E0 =
2π0ε0R3 

. 

This is exactly what we would expect. As in classical physics, the average dipole on A 
interacts with the average dipole on B. This interaction has a characteristic R−3 dependence, 
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which will dominate at long range as all higher terms decay at some higher power of R (e.g 
R−6, see below). 

Non-Lecture 

We have derived a first–order perturbation correction to the energy. This correction 
term is ∝ R−3 . Non-degenerate perturbation theory provides no explicit guidance as to 
when the perturbation term becomes so large at small–R that perturbation theory becomes 
invalid. However, it is reasonable to exercise caution when this dipole–dipole term becomes 
comparable to differences between zero–order energies. It is also necessary to be cautious at 
very small–R when the dipole–quadrupole term (1/R5) becomes larger than the dipole–dipole 
(1/R3) term. 

We have arrived at what we sought: an expression for the energy of the interaction 
between two molecules. This dipole-dipole interaction will typically dominate the inter-
molecular attraction at long range, except in one circumstance: if either A or B has a dipole 
moment of zero, the first-order term vanishes identically and we are left once again with no 
intermolecular attraction. For example, we would still have no interaction between methane 
and water, because methane has zero electric dipole moment. To rectify this, we must go to 
second-order in the expansion: ��� ��� ��� ��� R RR 2 2

(0∗) (0) b
0 (0) (0) EA + EB − EA − EB

E − E 0 0 α βm6 0 m (α,β)6=(0,0) =(0,0) 

ΨA∗ΨB∗ 
α β ΨB 

0Ψ b
m VABΨ0 dτ dτAdτBX X VABΨ

A 
0(2)

E = = 

Here we clarify that in this expression the single index m always specifies all of the quantum 
numbers for the system. Thus, in this case m = (α, β), contains two quantum numbers. 
The exclusion m 6 (0, 0) that restricts the sum eliminates only one term: = the case where 
both α = 0 and β = 0. It does not remove terms where only α = 0 or only β = 0. 
We can rationalize this by recalling that only the state whose perturbed eigenvalue we are 
computing (in this case the AB ground state) is excluded from the sum. All other terms 
must be included. Since the state with α = 0 and β = 1 is not the ground state (because 
molecule B is excited) it is included in the sum. 

As a result, we can break down the sum into three pieces. 



2 
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(i) If α = 0 we get 

X 
��� RR 

ΨA∗ΨB∗ 
α β 

��� 2 X 
��RR ��

= = 
b

0 Ψ
BVABΨ

A 
0 dτAdτB ΨA∗ΨB∗ 

0 β µBΨ
A 
0 Ψ

BµA b 0 dτAdτB 
B,ind (EA + EB) − (EA + EB ) 4π2ε20R

6 E�A + EB E�A − EB 
0 0 0 β 0 0 − �0 β

b
�66=0β β=0 

1(2)
E

�� ��RR 2X ΨA∗ 
0 b1 µAΨ

AdτA0 ΨB∗ 
β b dτBµBΨ

B 
0 

= 
4π2ε2 

0R
6 EB 

0 − EB 
ββ 6=0 

(a sum over all β 6 0 excited states of B) where on the second line we have again = 
rearranged things so that it is clear we have a product of an A integral times a B 
integral. The A integral does not depend on β, so we can move it outside the sum: ���µb0→β 

B 

��� 2 X 
��R ��2 

= 
|hµbAi|2 

4π2ε20R
6 

ΨB∗ 
β

= 
|hµbAi|2 

4π2ε20R
6 

X 

EB − EB 

b dτBµB Ψ
B 
0(2)

E (2)B,ind EB − EB 
0 β0 ββ 6 β=0=0 6

where we have defined the transition dipole by Z b0→β µbB 

The interpretation of this integral seems a bit challenging. There are several ways to 
understand it: 

1) If we put B in an electric field, µbB 
0→β reflects the importance of the excited state 

β 6= 0 in the new ground state of the system; 

2) in matrix language, µbB 
0→β is the off-diagonal interaction between state 0 of B and 

state β of B produced by the dipole operator; 

3) in spectroscopy, we will find that µbB 
0→β is related to the intensity of the optical 

transition between states 0 and β. 

However you slice it, the important point is that µb0→β need not be zero even ifB 

hµbBi vanishes. Thus, the second-order term we have labeled E(2) 
will typically B,ind 

give a non-zero contribution as long as A has a dipole moment. The contribution 
will be attractive, because the numerator in Eq. (2) is positive and the denominator is 
negative. Further, E(2) 

has a characteristic R−6 dependence on the A-B separation. If B,ind 
both molecules have a dipole, this contribution will be totally swamped by the dipole-
dipole contribution (which decays only as R−3), and so E(2) 

only really becomes B,ind 
important in cases where B has no dipole. 

(2)
Physically, we can interpret E as an induction effect (hence the subscript “ind”). B,ind 
If molecule A has a permanent dipole, this µbA dipole generates an electric field on B 
and induces a dipole on B because the electrons on B can polarize in the presence 
of the field. 

ΨB∗ 
β dτB .= µBΨ

B 
0 
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(ii) If we instead have the scenario where B has a permanent dipole but A does not, we 
get a contribution from the β = 0, α 6 0 terms in the sum, where the roles of A and= 
B are interchanged �R � 

(2) |hb α b 0 µB i|2 µAµBi|2 X � ΨA∗ µAΨ
AdτA 

�2 |hb X |b0→α|2 

EA,ind = 4π2ε20R
6 EA − EA 

=
4π2ε0

2R6 EA − EA 
0 α 0 αα6 α6=0 =0 

This term describes induction where the dipole moment on B induces a dipole on A. 

(iii) Finally, in the case where neither A nor B has a dipole, we appear to be out of luck. 
How do non-polar molecules stick to one another? The final piece to the puzzle is 
provided by the terms in the second-order energy where neither α nor β is zero. In 
that case �RR � X � ΨA∗ΨB∗ µB Ψ

AΨB �2 

E = � �
disp 4π2ε20R

6 (EA + EB ) − EA + EB 
(2) 1 α β µbA b 0 0 dτAdτB 

0 0 α βα,β=1 �R R � 
1 X � ΨA∗ µbAΨ

AdτA ΨB∗ µbB Ψ
BdτB 

�2 
α 0 β 0 

= � � . 
4π2ε2R6 (EA + EB EA + EB 

0 α,β=1 0 0 ) − α β 

Inserting our definitions of transition dipoles, this reduces to � �2 
0→α 2 � 0→β � X |µA | �µB �1(2)

Edisp = � � . (3)
4π2ε20R

6 (EA + EB ) − EA + EB 
0 0 α βα,β=1 

In general the summand will be a small number, because the denominator involves an energy 
difference between electronic states and we have seen that electronic energy differences are 
big numbers. However, it need not be zero even if neither molecule has a permanent 
dipole. The only things involved are the non–zero transition dipole moments, and we have 
seen that in general these need not be zero. We have thus discovered a universal force 
between molecules. It is attractive, because the numerator in Eq. (3) is necessarily positive, 
while the denominator is necessarily negative. Further, this dispersion term has no classical 
counterpart — it only exists because of quantum interactions. This attractive force was 
discovered by Fritz London and is called the London dispersion force in his honor. In physics, 
the analogous interaction between two uncharged plates is called the Casimir force. In either 
situation, one typically rationalizes the interaction using the following quantum logic: “While 
neither molecule has a dipole on average, the two molecules can still cooperate so that half 
the time molecule A will have a + dipole while B will have a − dipole (resulting in an 
attractive interaction) while the other half the time A is − and B is + (also attractive). On 
average, the dipoles are still zero, but there is still a net attractive interaction.” 

The dispersion interaction has a characteristic R−6 dependence on distance, and the 
coefficient is typically much smaller than that for dipole↔induced–dipole forces. Thus, it 
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is important in systems where both interacting particles have zero dipole moments. An 
important example of a material that exhibits this effect is graphite, where the graphene 
sheets are held together solely by the dispersion interaction between the layers. 

Putting everything together, Perturbation Theory gives us a physical hierarchy of 
intermolecular forces and also justifies why all kinds of molecules tend to stick together. 

Polarizability 

Once you understand how to use NDPT to compute induced-dipole effects, you know some-
thing about polarizability. Suitable topics for consideration include: 

• electric dipole transition moments 

• energy denominators 

He–He vs. Xe–Xe 

Large molecules vs. small molecules. Vibrational transition contribution toward polariz-
ability. 
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