
 
MIT OpenCourseWare 
http://ocw.mit.edu
 
6.002 Circuits and Electronics, Spring 2007 
 
Please use the following citation format: 
 

Anant Agarwal, 6.002 Circuits and Electronics, Spring 2007 
(Massachusetts Institute of Technology: MIT 
OpenCourseWare). http://ocw.mit.edu (accessed MM DD, 
YYYY). License: Creative Commons Attribution-
Noncommercial-Share Alike. 

 
Note: Please use the actual date you accessed this material in your 
citation. 
 
For more information about citing these materials or our Terms of Use, 
visit: http://ocw.mit.edu/terms
 

http://ocw.mit.edu/
http://ocw.mit.edu/
http://ocw.mit.edu/terms


MIT OpenCourseWare 
http://ocw.mit.edu
 
6.002 Circuits and Electronics, Spring 2007 
Transcript – Lecture 15b 
 
Before I begin today, I thought I would take the first five minutes and 
show you some fun stuff I have been hacking on for the past three 
years. This has to do with 6.002 and circuits and all that stuff, but this 
is completely optional, this is for fun, this is to go build your intuition, 
this is to check your answers, whatever you want. 
 
This is not a required part of the course. Just for fun. There is this URL 
out here that I put down here. I have been hacking on this system for 
the past three years, and for the first time this year and very 
tentatively and gingerly introducing it to students. 
 
The idea here is that it is a, that is kind of defocused. Any chance of 
focusing that a little bit better? The idea of this is that it is a Web-
based interactive simulation package that I have pulled together. 
 
And what you can do is you can pull up a bunch of circuits. Notice that 
the URL is up here. It is euryale.lcs.mit.edu/websim. And there is the 
pointer to it. So you have a bunch of fun things you can play with. 
 
And we have gone through all of these things in lecture. Let's pick the 
MOSFET amplifier. You come to this page. This is something you have 
seen in class. And let's play with this little circuit. 
 
And you see the mouse? Good. You can set up a bunch of parameters. 
You can set up the MOSFET parameters VT and K. You can set up the 
value of R for your resistor, you can establish a bias voltage, and you 
can have an input voltage vIN. 
 
So you can apply a bunch of input voltages. You can apply a zero 
input, unit in pulse, unit step, sine wave, square waves. Or this was 
the part that took me the longest to get right. You can also input a 
bunch of music. 
 
And so far I just have two clips, so you are going to get bored listening 
to them. Good. So you can also input music. And what you can do is 
you can watch the waveforms, you can listen to the output and do a 
bunch of fun stuff. 
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One experiment I would love for you guys to try out. Again, 
remember, this is completely optional. Just for fun. You can apply 
some input. Step input, for example, to an RLC circuit and spend 30 
seconds thinking about what should the output look like. 
 
I divine that the output should look like this and then do this and see if 
what you thought was correct. And it's fun to kind of play around with 
it. Let me start with, just as an example, let's say I input classical 
music. 
 
And let us say I would like to listen to the output here that is the 
voltage at the drain terminal of the MOSFET. For listening it sets up a 
default timeframe to listen to, so you go ahead and do it. 
 
This shows you the time domain waveform of a clip of the music and 
then you can listen to it. Lot's of distortion, right? As you can see, 
there is a bunch of distortion. And that is as you expect because the 
peak-to-peak voltage is 1 volt, the bias is 2.5, and so this is clipping at 
the lower end, plus the MOSFET is nonlinear. 
 
You can play around with a bunch of things and you can have a lot of 
fun. And the reason I created this is that MIT is putting a bunch of its 
courses on the Web. And one of the hottest things about courses like 
this is the lab component. 
 
If you are beaming a course to, say, a Third World country or 
something, how do you get people to set up the massive lab 
infrastructure? I know you hate your oscilloscopes, I know you hate 
your wires, I know you hate the clips, but the fact is you have them. 
 
I know a lot of places those are way too expensive to pull together, 
which is why I have been creating this Web-based kind of interactive 
laboratory so that people can learn this stuff over the Web. 
 
Let's go do another example very quickly. Let's say you learned about, 
well, let's do RC circuits. Here is the parallel RC circuit. And you can 
set up capacitor values, resistor values, you can set up input. 
 
Here, let me look at the time domain waveform for the voltage across 
the capacitor. And this time around let me play a unit step. And let's 
see what the output is going to look like. You can think in your minds 
what should the output look like, and then you can go and plot it. 
 



There you go. That's what the output looks like. So you can play 
around with it and have fun. That's all the good news. The bad news is 
that so far I just have one Pentium III machine behind us. 
 
It is a Linux box, so don't all of you try it at once. However, what I 
have also done, and that took me another six months of hacking in the 
small amount of time professors have to hack on stuff, I've hacked an 
incredibly elaborate cashing system so that once anyone in class tries 
out some combination of parameters it goes and squirrels away all the 
outputs. 
 
If anybody else types in the same sets of parameters it will just get all 
the output and play it back to you. So if enough of you play with over 
time, we may end up cashing all the important waveforms and music 
clips and all of that stuff. 
 
I have allocated a few gigabytes of storage, so I am hoping that it may 
work. Go forth. Play with it. And this is completely my fault, so if there 
are any bugs or anything simply email them to me. 
 
This is the first time this is coming alive so bear with it. Now let me 
switch back to the scheduled presentation for today. All right, hope 
and pray that this works. Yes. Good. I am going to do today's lecture 
using view graphs. 
 
And the reason I am going to do that and not do my usual blackboard 
presentation which I way, way, way prefer to a view graph 
presentation. The only reason I am going to do this for today, and 
maybe one more lecture, is that there is just a huge amount of math 
grunge in this lecture. 
 
What I want to do is kind of blast through that, but you will have it all 
in the notes that you have, so that you don't waste time in class as 
you watch me stumbling over twiddles and tildes and all that stuff. 
 
The key thing here is that the insight is actually very simple. The 
beginning and the end are connected very tightly and very simple. 
There is a bunch of math grunge in the middle that we are going to 
work through and, again, follows a complete old established pattern. 
 
So, in that sense, there is really nothing dramatically new in there. Let 
me spend the next five minutes reviewing for you how we got here, 
what have we covered so far and set up the presentation. The first ten 



view graphs I am going to blast through and just tell you where we are 
in terms of LC and RLC circuits. 
 
I began by showing you this little demo, two inverters, one driving. I 
can model the inductance here with a little inductor, the capacitor of 
the gate here. And recall that when I wanted to speed this up by 
introducing a 50 ohm smaller resistance, I got some really strange 
behavior. 
 
Just to remind you, for Tuesday's lecture it would help if you quickly 
reviewed the appendix on complex algebra in the course notes. 
Remember all the real and imaginary j and omega stuff? It would be 
good to very quickly skim through that. 
 
It is a couple of pages. Remember this demo? And the relevant circuit 
that is of interest to us is this one here. It is the resistor, there is the 
inductor and there is a capacitor. This is Page 3. 
 
I am just going to blast through the first ten view graphs. It is all old 
stuff. Then we observed the following output. We applied this input at 
VA and we got this output, a very slowly rising waveform because of 
the RC transient. 
 
And because of that you saw a delay. Notice that this delay was 
because of the slowly rising transient. This waveform took some time 
to hit the threshold of the neighboring transistor. So we say ah-ha, 
let's try to speed this sucker up by reducing the resistance in the 
collector of the first inverter. 
 
And so I had this input. Now, to my surprise, instead of seeing a nice 
little much higher and much faster transitioning circuit, well, I did see 
a much faster transitioning circuit but I got all this strange behavior on 
the output that I was interested in. 
 
And because of that, if these excursions were low enough, I could 
actually trigger the output and get a whole bunch of false ones here 
because of these negative excursions which should not really be there. 
 
That was kind of strange. In the last lecture we said let's take this one 
step at a time. Let's not jump into an RLC circuit. Let's go step by 
step. Let's start with an LC, understand the behavior. 
 
We started off with an LC circuit of this sort, and using the node 
equation we showed that this was the equation that governed the 



behavior of the circuit. And then we said that for a step input and for 
zero initial conditions, that is the zero state response, let's find out 
what the output, the voltage across the capacitor looks like. 
 
And so we obtained the total solution to be this. And there was a 
sinusoidal term in there. And the omega nought which was one by 
square root of LC. And this was the circuit. And so for this step input 
notice that the output looked like this. 
 
So far an input step I had an output that went like this. Notice that it 
is indeed possible for the output voltage to actually go above the input 
value VI. This is kind of non-intuitive but this can happen. 
 
So this waveform jumps up and down. But the steady state value, on 
average if you will, is VI. On the other hand, it does have sinusoidal 
excursions and this kind of goes on because there is nothing to 
dissipate the energy inside that circuit. 
 
By the way, the fact that the capacitor voltage shoots above the input 
voltage is actually a very important property. We won't dwell on it in 
6.002, but just squirrel that away in your brain somewhere. 
 
I promise you that some time in your life you will have to create a little 
design somewhere that will need a higher voltage than your DC input. 
And you can use this primitive fact to actually produce a DC voltage 
higher than you are given, and then use that somehow. 
 
In fact, there is a whole research area of what are called DC to DC 
converters, voltage converters. Let's say you have 1.5 volt battery, a 
AA battery, but let's say a circuit needs 1.8 volts. The Pentium IIIs, for 
example, needed 1.8 volts. 
 
And the strong arm is another chip that required 1.8 volts a few years 
ago, but the AA cell was 1.5 volts. How do get 1.8 from 1.5? Well, you 
have to step it up somehow. And this basic principle where the voltage 
can jump up above the input is actually used, of course with additional 
circuitry, to kind of get higher voltages. 
 
It is a really key point that you can squirrel away. This was pretty 
much where we got to in the last lecture. This starts off the material 
for today. What we are going to do is take that same circuit, but 
instead we are going to put in this little resistor here. 
 



This is what we set out to analyze. And for details you can read the 
course notes Section 13.6. The green curve here was the behavior of 
the LC circuit. And what we are going to show today is that the 
moment we introduce R this sinusoid here gets damp. 
 
It kind of loses energy. And I am going to show you that the behavior 
is going to look like this. By introducing R this guy doesn't keep 
oscillating forever. Rather it begins to oscillate and then kind of loses 
energy and kind of gets tired and settles down at VI. 
 
And remember the demo. This is exactly what you saw in the demo. 
You had a step input and you had this funny behavior. And for the RLC 
that is exactly what it was. So today's lecture will close the loop on 
what you saw in the demo and the weird behavior, and I am going to 
show you the mathematics foundations for that today. 
 
Let's go ahead and analyze the RLC circuit. I purposely created the 
entire presentation to follow as closely as possible both the discussion 
of the RC networks and the LC networks so that the math is all the 
same. 
 
Exactly the same steps in the mathematics are in the exposition of the 
analysis. What's different are the results because the circuit is 
different. So don't get bogged down or whatever in the mathematics. 
 
Just remember it is the same set of steps that you are going to be 
applying. We start by writing down the element rules for our elements. 
Nothing new here. For the inductor V is Ldi/dt. The integral form which 
is simply 1/L integral vLdt=i. 
 
We saw this the last time. And for the capacitor, the current through 
the capacitor is simply Cdv/dt. Those are the two element rules for the 
capacitor and inductor. The element rule for the resistor, of course, is 
V=iR. 
 
You know that. And for the voltage source we know that, too, the 
voltage is a constant. Just follow the same established pattern. By the 
way, just so you are aware, I have booby trapped the presentation a 
little bit to prevent you from falling asleep. 
 
You see the dash lines here? Whenever you see a dash line, that stuff 
needs to be copied down. Don't trip over that. Don't say I didn't warn 
you. We start by using the usual node method. And I have two nodes 
in this case. 



 
Unlike the LC circuits, I have two unknown nodes. One is this node 
here with the node voltage vA and the second node is the node with 
voltage vT. Let me start with vA and write the node equation for that. 
 
It is simply 1/L, the node equation for this is the current going in this 
direction with is vI-vA integral and that equals the current going this 
way which is vA-v/R, node equation. I then write the node equation for 
the node v, for this node here, and that is simply (vA-v)/R=Cdvdt. 
 
And that is what I have here, two node equations. Let me summarize 
the results for you and then show you a view graph where I grind 
through the math as to how I got the result. Here is the result I am 
going to get. 
 
If I take these two node equations and I massage some of the 
mathematics, I am going to get this result. And I will show you that in 
a second. By grinding through some math and solving these two 
equations and expressing this in terms of v, I get a second order 
differential equation, d^2v blah, blah, blah. 
 
Notice that this is different from the LC in this term. Every step of the 
way you can check to see if I am lying or I am correct. I will indulge 
you, indulge myself rather with a little story here. 
 
Richard Fineman was a known smart guy. And one of the reasons that 
he was that was in the middle of talks he was known to get up and ask 
some of the darndest, hardest questions and say ah-ha, you have a 
bug in this proof here or a bug in this equation that is not right. 
 
And usually he would be correct. So his trick in doing this and which is 
one reason how he became a known smart guy. What he would do is, 
as the speaker went on talking he would kind of follow along and think 
of a simple initial primitive case. 
 
In this case, I have an RLC circuit. So think of a simpler case of this. A 
simpler case of this is R=0. Whenever you set R to be zero, you should 
get exactly what we got in the last lecture, correct? That is what 
Fineman would do. 
 
He would boil this down to a simpler case, make some assumptions 
and just follow along. And whenever he found a discrepancy between 
the math here and his simple case he would say oh, there is a bug 
there. 



 
If you want you can catch me that way. Here, what Fineman would do 
is replace R being zero, and notice then this equation here is exactly 
what we got the last time with R being zero. Just remember that 
Fineman trick. 
 
This is the equation we get, the second-order differential equation with 
an R term in there. And let me just grind through the math and show 
you how I got this from this. So the two node equations again. 
 
And what I do is I start by taking these two equations and 
differentiating this with respect to t and this is what I get. And, at the 
same time, I have replaced (vA-v)/R here by this term. I replace this 
with this and differentiate. 
 
Then I simply divide the whole thing by C. Then I take this expression 
here and write down vA is equal to this stuff here. Next I am going to 
substitute this back for vA and eliminate vA. So I take this vA, stick 
the sucker in here, and thereby eliminate vA and get this. 
 
And then I simplify it and here is what I get. That is what I get. I just 
grind through the two equations and get that result. So like a stuck 
record I will repeat our mantra here, which is here is how we solve the 
equations that we run across in this course, the same three steps. 
 
Find the particular solution. Find the homogenous solution. Find the 
total solution and then find the constants using the initial conditions. 
Same steps. You could recite this in your sleep. And the homogenous 
solution is obtained using a further four steps. 
 
Let's just go through and apply this method to our equation and get 
the results. vP is a particular solution and vH is the homogenous 
solution. With a particular solution, oh. Before I go on to do that, let 
me set up my inputs and my state variables. 
 
My input is going to be a step. Remember, I am trying to take you to 
the point where the demo left off. The demo had a step input, so I am 
going to use a step input rising to vI. And I am going to with the initial 
conditions being all zeros. 
 
So the capacitor voltage is zero, inductor current, another state 
variable is also zero, and therefore this is also fondly called the ZSR or 
the zero state response because there is only an input but zero state. 
 



Again, remember the dashed lines here. Don't say I didn't warn you. 
Let's start with a particular solution. This is as simple as it gets. I 
simply write down the particular equation and stick my specific input. 
 
And remember the solution to the particular equation is any old 
solution, it doesn't have to be a general solution, any old solution that 
satisfies it. And I am going to find a simple solution here. 
 
And V particular is a constant VI. It works. Because remember this has 
been working all along. And I am going to keep pushing this and see if 
this works until the end of the course. Guess what? It will. 
 
So this is a solution. I'm done. That is my particular solution. Simple. 
Second, I go and do my homogenous solution. And the homogenous 
equation, remember, is the same old differential equation with the 
drive set to zero. 
 
Remember that sometimes this equation with the drive set to zero is 
the entire equation you have to deal with in situations where you have 
zero input, for example. Or in other situations in which you have an 
impulse at the input. 
 
And the impulse simply sets up the initial conditions like a charge in 
the capacitor or something like that. So we are going to blast through 
this four-step method. The method simply says that four steps, I am 
going to assume a solution of the form Ae^st. 
 
And if you think you've seen that before, yes, you have seen it many 
times before. And you will see it again, again and again. And we need 
to find A and s. We want to form the characteristic equation, find the 
roots of the equation and then write down the general solution to the 
homogenous equation as this. 
 
Same old same old. Let me just walk through the steps here. Step A, 
assume a solution to the form Ae^st. And so I substitute Ae^st as my 
tentative solution to the equation. Again, let me remind you that the 
differential equations that we solve here are really easy because the 
way you solve them is you begin by assuming you know the solution 
and stick it in and find out what makes it work. 
 
I am going to stick Ae^st into this differential equation, and A comes 
out here. Differentiate this d squared, I get s squared down here, A s 
here and this simply gets stuck down here with the 1/LC coefficient. 
 



The next step I begin eliminating what I can, so I eliminate the A's, 
then eliminate the e^st's, and I end up with this equation here. I end 
up with this equation. This is my characteristic equation. 
 
It is an equation in s. Do people remember the characteristic equation 
we got for the LC circuit? Remember the Fineman trick? That's right, 
LC. S^2+1/LC=0. This thing wasn't there. All you do is simply follow 
the R. 
 
Just follow the R. Just imagine this is a dollar sign and kind of follow it. 
And you will see what the differences are between the LC and the RLC. 
So this is the characteristic equation. What I am going to do, iss much 
as I wrote the characteristic equation for the LC circuit, by substituting 
omega nought squared for 1/LC. 
 
Let me do the same thing here but introduce something for R and L as 
well. What I will do is let me give you this canonic form. The very first 
second-order equation I learned about when I was a kid was this one, 
S^2+2AS+B^2 or something like that. 
 
Let me write it in that form where I get 2 alpha s plus omega nought 
squared. Again, remember the alpha comes about because of R. So 
omega nought squared is 1/LC and alpha is RL/2. Omega nought 
squared is 1/LC and R/L is equal to two alpha. 
 
I am just writing this in a simpler form so that from now on going 
forward I am just going to deal with alphas and omega noughts. Once 
I get to this characteristic equation, after that I can give you one 
generic way of solving it. 
 
And depending on the kind of circuit you have, a series RLC, which is 
what we have, or a parallel RLC we will simply get different coefficients 
for the alpha term. This is going to stay the same but this term will 
look different, alpha is going to look different. 
 
There is a real pattern here. And what I am doing is simply focusing on 
what is important, what the differences are between the pattern. You 
learned the LC situation and the RLC situation. Given this I can now 
write down, I am just simply replacing this as my characteristic 
equation in dealing with alphas and omegas. 
 
I will give you a physical significance of alpha in a little bit. Do you 
remember the physical significance of omega nought? That was the 
oscillation frequency. In other words, given an inductor and capacitor, 



you put some charge on the capacitor and you watch it, it will 
oscillate. 
 
And its oscillation frequency will be one by a square root of LC. The 
magnitude of the initial conditions will determine how high are the 
oscillations or what the phase is in terms of when it starts, but the 
frequency is going to be the same. 
 
Step three, to solve the homogenous equation, is find the roots of the 
equation, s1 and s2, and here are my roots. Good old roots for a 
second-order, little s squared equation here. Finally, given that I have 
the roots, I can write down the general homogenous solution. 
 
So general solution is simply A1e^s1t, A2e^s2t. That's it. That's the 
solution. This looks big and corny, but we are going to make some 
simplifications as we go along and show that it ends up boiling down to 
something cos omega t. 
 
The math is kind of involved but we get down to something very 
simple, a cosine. Hold this general solution. From that, as a step three 
of the differential equation solution, I write the total solution down. 
 
And my total solution is the sum of the particular and the 
homogenous, so therefore I get this. VI was my particular and this 
term here is my homogenous solution. Now, if I wasn't doing circuits 
and simply trying to solve this mathematically here is what I would do. 
 
I would find the unknown from the initial conditions, so I know that 
v(0)=0. And so therefore if I substitute zero for V(0) I get this. If I 
substitute zero here, t is 0, t is 0, so I simply get V1+A1+A2. 
 
And let me just blast through because I am going to redo this 
differently. i=Cdv/dt. And so that's what I get. I substitute zero and 
this is what I would get. I hurried through this. Don't worry. 
 
I'm going to do it again. If you just do it mathematically, you can solve 
this equation here and these two simultaneous equations in a1 and a2 
and get the coefficients and you are done. But it doesn't give us a 
whole lot of insight into the behavior of these terms here. 
 
What I am going to do for now is kind of ignore that. Ignore I did that 
and instead try to go down a path that is a little bit more intuitive. 
Let's stare at this expression we got for the total solution. 
 



That is the expression we got. All I did is, I had alpha in there, I 
simply pulled out the alpha outside. So this is my total solution, V1-
A1e^(-alpha t) something else and something else. Three cases to 
consider depending on the relative values of alpha and omega nought. 
 
If alpha is greater than omega nought then I get a real quantity here. 
The square root of a positive number, I get a real number, and that 
number will add up to the minus alpha and I am going to get a 
solution that will look like, oh, I'm sorry. 
 
Let me just do it a little differently. There are three situations here. 
One is alpha greater than omega nought. Alpha equal to omega 
nought. Alpha less than omega nought. Alpha is greater, alpha is less, 
alpha is equal to this term inside the square root sign. 
 
For reasons you will understand shortly, we call this "overdamped" 
case, the "underdamped" case and the "critically damped" case. When 
alpha is greater than omega nought this term gives me a real number, 
and I get something as simple as this. 
 
Remember, for the series RLC circuit, alpha was R/2L. So if R is big, in 
other words, if in my RLC circuit R is huge then I am going to get this 
situation. My output voltage on the capacitor is going to look like this, 
the sum of two exponentials. 
 
And if I were to plot it very quickly for you, for a VI step, V would look 
like this. So v would simply look like this because it is the sum of a 
couple of exponentials. All right. Now, alpha is positive here. 
 
Remember alpha1 and alpha2 are both positive. These two added up, 
because of this constant VI, give rise to something that increases in 
the following manner. Let's look at the situation where alpha is less 
than omega nought, where the term inside the square root sign is 
negative. 
 
What I can do is pull the negative sign out and express it this way. 
What I am going to do is since alpha is less than omega nought, I am 
going to reverse these two and pull out square root of minus one to 
the outside. 
 
This is what I get. I am just playing around with this so that whatever 
is under the square root sign ends up giving me a positive real 
number. So I pull the j outside and this is what I get. Now, let me 



blast through a bunch of math and end up with something very, very 
simple for this underdamped case. 
 
Let me define a few other terms. I am going to call omega nought 
minus alpha squared the square root of that. I am going to call it 
omega d. And here is what I get. So I have defined three things for 
you now, alpha, omega nought and omega d. 
 
And I get this equation in terms of alpha and omega d. And then, 
remember from your good-old Euler relationship? e to the j omega d is 
simply cosine plus a j sine. I am just going to blast through a bunch of 
math rather quickly. 
 
Once I replace this in terms of a cosine and sine, cosine and a j sine 
and then collect all the coefficients together, I get an equation of the 
form VI plus some constant e to the minus alpha t, cosine, the sum of 
the constant e to the minus alpha t, sine. 
 
Remember the sines and cosines are coming out, but because of my R 
I am getting this funny alpha here, e to the minus alpha here. So I am 
getting sums of sine and cosine. And K1 and K2 are some constants 
which I will need to determine for my initial conditions. 
 
I am going to continue on with this and keep on simplifying it because, 
as I promised you, I want to get to something that is just a cosine. I 
want to go down this path. I am not going to cover this case, the 
critically damped case. 
 
And I will touch upon it later but not dwell on it. Let me continue down 
the path of the underdamped case, and this is what we have. 
Continuing with the math, let's start with the initial conditions, v 
nought equals zero, and that gives me K1 is simply -VI. 
 
So at v(0)=0 t is zero, so this terms goes away, the cosine becomes a 
1, e^(alpha t) goes away, and K1=-VI. Then I know that i(0) and i is 
simply Cdv/dt. And I get this nasty expression. I substitute t=0 and I 
get something that looks like this. 
 
I know what K1 is, and so therefore K2 is simply -V1alpha divided by 
omega nought. I have taken this expression where the unknowns K1 
and K2 are to be found. I set the initial conditions down at t=0 and I 
get K1 and K2 as follows, which gives me the following solution. 
 



This is the solution I get where I do not have any unknowns anymore. 
Remember that omega d and alpha are directly related to circuit 
parameters. Alpha was R/2L and omega d was square root of alpha 
squared minus omega nought squared. 
 
** omega d = sqrt(alpha^2 - omega_0^2) ** And omega nought 
squared was 1 by square root of LC. So I know it all now. I still have 
sines and cosines here, so I am going to simplify this a little further. 
 
Oh, before I go on to do that, let's do the Fineman trick again and 
notice if I am still true to the LC circuit I did the last time. Remember 
when R goes to zero alpha goes to zero. Because alpha is R divided by 
2L. 
 
If alpha was zero what happens? If alpha was zero, this guy goes to 
one, this whole term goes to zero and omega dt now ends up 
becoming omega nought, and I get this term here. I get VI-
VIcosine(omega t), which is exactly what I expected in my equation. 
 
This is the same as the LC case that I got. Let's go back to this 
situation and simply if further. If you look at Appendix B.7 in your 
course notes, Appendix B.7 is a quick tutorial on trig. And in that trig 
tutorial you will see that, and you have probably seen this before, too, 
multiple times, the scaled sum of sines are also sines. 
 
This is an incredibly cool fact of sinusoids. If you take two sinusoids of 
the same frequency and you scale them up in any which way and add 
them up you also end up with a sinusoid. It is hard to believe but it is 
true. 
 
It is an incredible property of sinusoids. Take any two sinusoids, scale 
them in any way you like, same frequency, add them up, you will get a 
sinusoid. What that is saying is that, look, here is a sinusoid, here is a 
sinusoidal function, and I am scaling them up in some manner. 
 
So I should be able to add them up and be able to express that as 
single sine. And to be sure you can, look at the Appendix, and there is 
an expression for a1 sinX plus a2 cosX is equal to a cosine of blah, 
blah, blah. 
 
This is what you get. No magic here. Just math. From here I directly 
get this. And look at what I have. It is absolutely unbelievable. v(t) is 
simply VI, there is a constant here, this an e to the minus alpha term 
and there is a cosine. 



 
Again, to pull the Fineman trick, if this alpha were to go to zero here 
then you would end up with the expression you had for the LC 
situation. Let's stare at this a little while longer. There is a constant 
plus a minus, a cosine term, so there is a sinusoid at the output, and 
there is an e to the minus alpha which ends up giving you the decay 
you have seen before. 
 
In other words, to a step input, the LC circuit would give you a 
sinusoid. That is what the LC circuit would do if alpha was zero. But 
because of this alpha term here, e to the minus alpha t, that gives rise 
to a damping effect, so this causes this thing to become smaller and 
smaller as time goes by until this term goes to zero at t equals infinity. 
 
This guy damps down and so therefore you end up getting the curve 
that you saw like this. Twenty minutes of juggling math solving a 
second-order differential equation, but what ends up is the same 
sinusoid but it is damped in the following manner such that the 
frequency, rather the amplitude keeps decaying until it starts off at 
zero and then settles down at vI. 
 
This is exactly what you saw in the demo that we showed you earlier. 
The critically damped case, I am not going to do it here. I am going to 
point you to the following insight. The underdamped case looked like 
this. 
 
It was a sinusoid that kind of decayed out. That is the underdamped 
case. And then I showed you the overdamped case. The overdamped 
case looked like this. And, as you might expect, the critically damped 
case is kind of in the middle and looks like this. 
 
So the overdamped case would look like this, underdamped like this, 
and the critically damped case kind of goes up and kind of settles 
down almost immediately. This is when alpha equals omega nought. 
 
I won't do that case here, but I will simply point you to Section 13.2.3. 
Just to tie things together, recall this demo here that we showed you 
in class yesterday. This is exactly the kind of form of the sinusoid you 
saw because of that input step. 
 
If you want to see a complete analysis of inverter pairs and look at the 
delays and so on because of that, you can look at Page 170 and 
example 898. In the next five or six minutes, what I would like to do is 
stare at the RLC circuit. 



 
And much like I showed you some intuitive methods to get the RC 
response, what we are going to do is do the same thing for the RLC. In 
the RLC situation, much like the RC situation, experts don't go around 
writing 15 pages of differential equations and solving them each time 
they see an RLC circuit. 
 
They stare at it and boom, the response pops out, the sketch pops 
out. This one is going to be another one like our Bend it Like Beckham 
series here. And this one is in honor of Leslie Kolodziejski. 
 
And I call it "Konquer it like Kolodziejski". Again, as I said, experts 
don't go around solving long differential equations and spending ten 
pages of notes trying to get a sinusoid. They look at a circuit and 
sketch response. 
 
I am going to show you how to do that, too. And what you can do is, 
to practice, go to Websim and try out various combinations of inputs 
and initial conditions and sketch it, time yourself, give yourself 30 
seconds or a minute if you like, and sketch it and check it against the 
Websim response. 
 
If it doesn't match either you are wrong or there is a bug in Websim. 
What I am going to do is, the response to the critically damped and 
underdamped case was very easy to sketch out. You started with an 
initial condition, you settled at VI and just kind of drew it like that. 
 
The interesting case is the underdamped case, and that is what I am 
going to dwell on. Before we go on and I show you the intuitive 
method, as a first step I would like to build some intuition. Let's stare 
at this response here and try to understand what is going on. 
 
This is the response that we saw. And this fact that you see an 
oscillation happening is also called "ringing". You say that your circuit 
is ringing. All right. You see some interesting facts. You see that 
frequency of the ringing is given by omega d. 
 
This cosine omega d, so that is the frequency omega d. So the time is 
2 pi divided by omega d. The oscillation frequency is omega d, but 
omega d is simply omega nought squared minus alpha squared. 
 
Once you have a big value of R alpha becomes very small and omega 
d is very commonly equal to, very close to omega nought. So omega d 



and omega nought very commonly are very close together. And when 
that happens this frequency is directly omega nought. 
 
Alpha governs how quickly your sinusoid decays. e to the alpha t here 
is the envelope that governs how quickly my sinusoid decays. And 
notice that each of these terms, alpha and omega nought, comes 
directly from my characteristic equation. 
 
Which means that once you get your characteristic equation you really 
don't have to do much else. And up until now you still have to write 
the differential equation to get the characteristic equation, so you still 
have to do some differential equation stuff, but in two lectures I am 
going to show you a way that you can even write down the 
characteristic equation by inspection. 
 
Look at your circuit and boom, in 15 seconds or less write down the 
characteristic equation. It is absolutely unbelievable. What are the 
other factors that are interesting here? Of course I need to find out 
initial values. 
 
I start off at zero. This is my capacitor voltage. If I don't have an 
infinite spike or an impulse my capacitor voltage tries to stay where it 
is and starts off at zero. And the final value is given by VI, the 
capacitor is a long-term open so therefore VI appears across the 
capacitor. 
 
In the long-term my final value is going to be VI. There is one other 
interesting parameter, which I will simply define today but dwell on 
about a week from today, and that is called the Q. Some of you may 
have heard the term oh, that's a high Q circuit. 
 
Q is an indication of how ringy the circuit is. And Q is defined as 
omega nought by 2 alpha. It is called the "quality factor". And it turns 
out that Q is approximately the number of cycles of ringing. 
 
So if you have a high Q you ring for a long time and if you have a low 
Q you ring for a very short time. That is called the quality factor 
defined by omega nought by 2 alpha. Notice that Q, omega nought, 
alpha, omega d, all of these come from the terms in the characteristic 
equation. 
 
We will spend more time on Q later. With this insight here is how I can 
go about very quickly sketching out the form of the response. Here is 



my circuit. I want to sketch the form of the response for a step input 
at vI. 
 
Zero to vI step input here, I want to find out what happens at this 
point. This is described to you in a lot more detail in Section 13.8 in 
your course notes. Let's go through the steps. Let's do the really 
simple situation first. 
 
Let's also assume for fun that you are given that v(0) starts out being 
some positive value. Some v(0) which is a positive number. And, to 
make it harder on ourselves, let's say i(0) starts out being some 
negative number. 
 
So i(0) is some negative current. The first thing I know is v(0), the 
capacitor voltage starts out here, which can change suddenly. And I 
also know that in the long-term this is an open circuit. So that this 
voltage vI will appear directly across the capacitor in the long-term. 
 
So I get starting out at v(0), ending at vI, I am also half the way 
there. I know the initial and ending point of the curve. And then I 
know that somewhere in here there must be some funny gyrations 
here, because remember I am dealing with the underdamped case. 
 
And you can determine that from alpha and omega nought. If alpha is 
less than omega nought, you know that you are in the underdamped 
case and this is what you get. Let's compute and write the 
characteristic equation down. 
 
A week from today you will write it by inspection, but for now you will 
do it by writing down a differential equation. And from the 
characteristic equation you will get omega d, you will get alpha, omega 
nought and Q. 
 
So omega d gives you the frequency of oscillations. My frequency of 
oscillation is now known. From Q I know how long it rings, because I 
know it rings for about Q cycles. I know that ringing stops 
approximately here. 
 
And then I know that between that the start and end point my curve 
kind of looks like this, something like this. Right there we are 95% of 
the way there. The only question is I do not know if it goes like this or 
it goes like this. 
 



I am not quite sure yet if it starts off going high or starts off going low. 
Not quite clear. I also do not know what the maximum amplitude is. It 
turns out this is rather complicated to determine so we won't deal with 
that. 
 
Just simply so you can draw a rough sketch. The questions is which 
way does it start? I could leave it for you to think about. Yeah, let me 
do that. It is given on this page so don't look at it. 
 
Think about it, and think about how you can determine whether it goes 
up or down. It turns out that in this case it is going to down and then 
ring. See if you can figure it out for yourselves and then we will talk 
about it next week. 


