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6.002 Circuits and Electronics, Spring 2007 
Transcript – Lecture 4 
 
So today we are going to talk about another process of lumping or 
another process of discretization what will lead to the digital 
abstraction. So today's lecture is titled "Go Digital". So let me begin 
with a usual review. 
 
And so in the first lecture we started out by looking at elements and 
lumping them. For example, we took an element and said for the 
purpose of analyzing electrical properties let's lump this element into a 
single lumped value called a resistor, R. 
 
And this led to the lumped circuit abstraction. The lumped circuit 
abstraction says let's take these elements, connect them with wires 
and analyze the properties of these using a sort of analysis technique. 
 
So a set of a methods. We've looked at the KVL, KCL method. Another 
example of a method we looked at was the node method. And of this 
category there is one method you should remember, which you can 
apply to every single circuit and it will simply work, is the node 
method. 
 
For linear circuits other methods also apply, and these include 
superposition, Thevenin method, and in recitation or in your course 
notes you would have looked at the Norton method. So that's what we 
did so far. 
 
So this is a toolkit. So now you have a utility belt with a bunch of tools 
in it, and you can draw from those tools. And, just like any good 
carpenter, you know, the carpenter has to cut a piece of wood. 
 
He could use a chisel. He could use a saw. He could use an electric 
saw. And the reason you pay carpenters $80 an hour in the Boston 
region is because they know which tool to use for what job. So what 
we'll learn today is, so this was one process of discretization. 
 
We discretized matter. This gave us the discipline here that we decided 
to follow, lumped matter discipline, that moved us from Maxwell's 
equations into this new playground called EECS. Where all elements 
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looked like these rinky-dinky little values like resistors and voltage 
sources and so on. 
 
What we'll do today, if that wasn't simple enough, let's simplify our 
lives even further. What we're going to do is lump some more. So 
what else can we lump? We've lumped matter, so all matter is taken 
care of. 
 
So what can we lump to make life even easier? When in doubt, if 
things are complicated, discretize it or lump it, right? So what do you 
think? What we will do today is lump signal values. So we'll just deal 
with lumped values. 
 
And this will lead to the digital abstraction. And the related reading is 
Chapter 5 of the course notes. So before we do this kind of lumping, 
let me motivate why we do this. One reason is to simplify our lives, 
but there is no need to just go around simplifying things just because 
we can. 
 
Let's try to see if there are other reasons motivating the digital 
abstraction. So what I would like to start with is a simple example of a 
analog processing circuit that you should now be able to analyze. 
 
So I'm going to be motivating digital. So let's start with an analog 
circuit that looks like this, two resistors, R1 and R2. And what I'm 
going to do is apply a voltage source here, V1, apply another one 
here, V2, and make this connection. 
 
And let me call this voltage V nought and call this my output. This 
voltage with respect to ground node, rather than drawing this wire 
here, I often times draw a ground here and simply throw ground 
wherever I want. 
 
This symbol simply refers to the fact that the other terminal is taken at 
the ground node. So here is my V nought. Now, let's go and analyze 
this and see what it gives us. In this example, V1 and V2 may be 
outputs of two sensors, maybe heat sensors or something like that. 
 
This is a heat sensor on that side of the room and this is a heat sensor 
on this side of the room. And I pass their signals through two resistors 
and I look at the voltage there. So by now you should be able to write 
the answer V nought, or the value V nought almost by inspection. 
 



Just to show you, let me use superposition. When you see multiple 
sources, the first thing you should think about is can I use 
superposition to simplify my life? And let me do that. V nought here is 
the sum of two voltages, one due to V1 acting alone and one due to V2 
acting alone. 
 
So what's the voltage here due to V1 acting alone? To find out that I 
short this voltage, I zero out this voltage and look at the effect of V1. 
So the effect of V1, if this were shorted out, is simply V1 x R2 / R1 + 
R2. 
 
This is now a voltage divider, right? A voltage V applied across two 
resistors and the output taken across one resistor. So that's this value. 
Then I could do the second part. To look at the effect of V2, what I will 
do is short this voltage and look at the effect of this. 
 
Now, this voltage is across this resistor divider. And so I get R1 / (R1 
+ R2) here. So you'll notice that for something like this, if I had 
applied KVL and KCL of the node method I would have gotten a bunch 
of equations, but here I wrote it just by inspection. 
 
You should be able to look at circuit patterns like this and write the 
answers down very quickly. Let's say if I chose R1 to be equal to R2 
then V nought would simply be (V1 + V2) / 2. So if these two values 
were equal, I simply get the output, the average of the two voltages. 
 
So this guy is an adder circuit. It adds up these two voltages. But 
more precisely it's an averaging circuit. It takes two voltages and gives 
me the average value. Now, if you have two sensors in the room, you 
might think of why you want to take that average value to control the 
temperature of the room. 
 
But suffice it to say that V nought is the average of the two values. So 
let me show you a quick demo of this example and then look at what 
the problems are with this example. So let's say, as one example, I 
applied a square wave at V1, which is the top curve, the green curve, 
and I applied a triangular wave at V2, that's the second one. 
 
As you expect, the output is going to be the sum of the two voltages 
scaled appropriately. So notice that I have a square wave with a 
superimposed triangular wave on top. And I can play around. What I 
could do is change the amplitude of my wave form here. 
 



And, as you notice, the amplitude of the output component also 
changes accordingly. So this is one simple example of an adder circuit, 
and the two wave forms get summed up and I get the output. So I'll 
switch to Page 3. 
 
Let me just draw a little sketch for you here. Here, what I showed you 
was I had a triangular wave coming on one of these inputs and I had a 
square wave on the other one, and the output looks something like 
this. 
 
OK? No surprise here. This is a simple analog signal processing circuit 
which gives me the average of two wave forms. Now, let me do the 
following. Often times I may need to look at this value some distance 
away. 
 
So let's say this person here wants to look at the value. So I bring this 
wire here. And I also bring the ground connection and I look at it. I 
look at this value here. And when I have a long wire I can get noise 
added onto the circuit. 
 
So let's say a bunch of noise gets added into the signal there. And 
what I end up seeing here is not something that looks like this but 
something that looks like that. That's not unusual. And the problem 
with this is now when I look at this, if I'm looking to distinguish 
between, say, a 3.9 and a 3.8, it's really hard to do that because my 
noise is overwhelming my signal. 
 
I have a real problem, a real problem here. Noise is a fact of life. So 
what do we do? This is so fundamental. Large bodies of courses in 
electrical engineering are devoted to how do I carefully analyze signals 
in the presence of noise? You'll take courses in speech processing that 
look at clever techniques to recognize speech in the presence of noise 
and so on and so forth. 
 
One technique we adopt that we'll talk about here, which is 
fundamental to EECS, is using the digital abstraction. Let me show you 
how it can really help with the noise problem. So the idea is value 
lumping or value discretization. 
 
Much like we lumped matter, we've discretized matter into discrete 
chunks, let's discretize value into two chunks. Let's simply say that 
now I'm going to deal with two values and I can, say, call them high, 
low. 
 



I have a bunch of choices here. I may call it 5 volts and 0 volts. I may 
call it true and false. What I'm doing is I'm just restricting my universe 
to deal with just two values, zero and one. This is like dealing with a 
number system with only two digits. 
 
And these are zero and one. So what I've now done is I'm saying that 
rather than dealing with all possible continuous values, 0.1, 3.9999 
recurring and so on and so forth, what I'm going to do is simply deal 
with a high and a low. 
 
Dealing with this whole continuum of numbers is really complicated. 
Let me simplify my life and just postulate that I am going to be looking 
at high and low. Whenever I see something I'll look at it and say high 
or low, is it black or white, period. 
 
There's no choice here, just two individual values. So that sounds 
simple, and nice and so on, but what's the point? What do we get by 
doing that? Let's take our example. Let's take what might be a digital 
system. 
 
Let's take a digital system and let's say I have a sender. Much like I 
sent a signal value a long distance, let me have a sender, and I have a 
ground as well and here is a receiver. This symbol simply says that 
both of them share a ground wire. 
 
So the sender and a receiver. And what I'm interested in doing, the 
sender is interested in sending a signal to the receiver. And in the 
digital system, the way I would send a digital signal is all I can use is 
ones and zeros, OK? So let's say the sender sends something like this. 
 
The sender wants to send a value. This is my time axis and this is 2.5 
volts, this is 0 volts and this is 5 volts. My sender has some agreement 
with the receiver and says I'm just going to be sending to you low 
values and high values. 
 
And this signal here would correspond to "0" "1" "0". It's a symbol. 
That's why I have input zero in quotes there. We'll go into this in much 
more detail later, but for now suffice it to say that I'm sending a set of 
signals here "0" "1" "0". 
 
This simplistic scheme will not work in many situations but go along 
with this for a few seconds. So I send the signal sequence "0" "1" "0" 
out here. And notice that there is a high and a low. And the agreement 



the sender and the receiver have is that, look, if you see a value that's 
higher than 2.5 volts that's a high. 
 
If you see a value below 2.5 volts in the wire that's a low. And I'm 
going to send a 0 volt and a 5 volt from here. So now at the sending 
site let's say I don't have any noise in this system. Let's say this is my 
Vn, some noise being added. 
 
And let's say Vn is 0. Then in that case I will receive exactly what is 
sent "0" "0" 5, 2.5, 0 volts. And this is time. Nothing fancy here, right? 
My receiver receives a "0" "1" "0". Now, the beauty of this is that now 
suppose I were to impose noise much like I had noise out there and Vn 
was not 0. 
 
Rather Vn was some noise voltage, let's say 0.2 volts peak to peak. 
Let's say that simply got superposed on the signal. In which case what 
do I get? What I end up here with is a signal that looks like this. 
 
So the receiver gets that signal because a noise is added into my 
signal and that's what I get. But guess what? No problem. The receiver 
says oh, yeah, this is a 0 because the values are less than 2.5, this is 
a 1 and this is a 0. 
 
"0" "1" "0". So here my receiver was able to receive the signal and 
correctly interpret it without any problems. So because I used this 
value discretization and because I had this agreement with the 
receiver, I had better noise immunity. 
 
Consequently, I had what is called a noise margin. Noise margin says 
how much noise can I tolerate? And in this situation, because the 
sender sends 5 volts and 0 volts, the 5 volts can creep all the way 
down to 2.5, I'll still be OK. 
 
Similarly, 0 could go all the way up to 2.5, I'd still be OK. So in this 
case I have a noise margin of 2.5 volts for a 1 and similarly 2.5 volts 
for a 0, because there are 2.5 volts between a 0 volt and 2.5. 
 
So notice that I have a nice little noise margin here, which simply is 
the English meaning of the term there is a margin for noise. And even 
though I can change the signal value by up to 2.5 volts, the receiver 
will still correctly interpret the signal. 
 
So I've decided to discretize values into highs and lows. And because 
of that, if all I wanted to do in life is send highs and lows I can send 



them very effectively. There are many complications, but if all I care 
about is sending highs and lows I can send it with a lot of tolerance to 
noise. 
 
So many of you are saying but what about this, but what about that? 
There are lots of buts here. And let's take a look at some of them. If 
you look up there. What I ended up doing was creating a design space 
that looked like this. 
 
This is on Page 6. What I did was I said with a range of values from 0 
to 5, what I'm going to do is at 2.5 I drew a line and I said as a sender 
if you wanted to send a 0 then you would send a value here. 
 
And if you wanted to send a 1 you would send a value here. Similarly, 
for a receiver. And if the sender sent a value all the way up in 5 volts 
that was the best thing, but technically the sender could send any 
value between 2.5 and 5. 
 
And if there was no noise then the receiver could correctly interpret a 
1 if it was above this and 0 if it was below this. The problem with this 
approach really is that if I allow the sender to send any value above 
2.5 all the way to 5 then there really is no noise margin in this 
situation. 
 
OK? Because if I allowed the sender to send any value between 2.5 
and 5 then what if I have a value 2.5 for a 1? Then I may end up 
getting very little noise margin on the other side. Worse yet, what if I 
get a value 2.5? That's a much worse situation. 
 
What if the receiver receives a value of 2.5? Now what? What does the 
receiver do? The receiver cannot tell whether it's a 1 or a 0. The 
receiver gets hopelessly confused. So to deal with that, I'm going to fix 
this, what I'm going to do is the following. 
 
Switch to Page 7. What I'll do here is to prevent the receiver from 
getting confused, if the receiver saw 2.5, what I'm going to do is 
define what is called "no man's land". I'm going to define the region of 
my voltage space called the forbidden region. 
 
And what I'm going to do is, say, let's say I defined it as 2 volts, 3 
volts and 5 volts, 0, 2, 3 and 5. With my forbidden region, if I have a 
sender then I tell the sender you can send any value between 3 and 5 
for a 1. 
 



And you can send any value between 2 and 0 for a 0. To send the 
symbol 0, I can send any voltage between 0 and 2, and similarly for 1. 
At the receiving side, if I see any value between 3 and 5, I read that 
as a 0, and any value between 0 and 2 I read that as 2 volts. 
 
So I may label this value VH and label this threshold VL, so there's a 
high threshold and a low threshold. So this solves one problem. Now 
the receiver can never see a value in the forbidden region. 
 
Now, I can stand her and pontificate and say, oops, that's a forbidden 
region, thou shalt not go there. But what if I get some noise and a 
value goes in there? In real systems values may enter there. 
 
But what I'm saying, so this is the beauty of using a discipline. Let me 
use my playground analogy. This is my playground. We got into this 
playground using the discrete matter of discipline, the playground of 
EECS, but in that playground some region of that playground deals 
with just high and low values. 
 
I further restrict the playground and I say I'm only going to focus on 
that playground in which all signal values have a forbidden region. All 
senders and receivers adhere to a forbidden region. And if there is any 
signal in this space, in the forbidden space then my behavior is 
undefined. 
 
I don't care. You want to go there? Sure. I don't know what's going to 
happen to you. Now, we're engineers, right? So we've disciplined 
ourselves to play in this playground. It's like I tell my 9-year-old, don't 
go there, right? And of course he wants to go there. 
 
He says what will happen if I go there? And the answer here will be 
undefined, OK? Something really bad could happen to you. I don't 
know what it is but something really bad, you know, a lightening bolt 
or who knows what, but something really bad. 
 
And you as a designer of a circuit can, let's say you were Intel. Intel 
designs its chips. And let's say Intel decides to play in this playground 
and there is a forbidden region. So Intel says oh, it's really easy for 
me if in the forbidden region the chip simply burns up and catches fire, 
we'll sell more chips. 
 
That's fine. Whatever you want. The key here is that all I'm saying is 
that I am going to discipline myself into playing in this playground and 



that's where I will define my rules, and you stay within the boundaries 
and all the rules will apply. 
 
It's called a "discipline." You're disciplining yourselves to stay within it. 
There's no logic to it. It's just a discipline. Just do it and you'll be OK. 
When we look at practical circuits and so on, we have to address the 
issue of what happens when things go in there. 
 
But let's postpone that discussion. For now I've solved one of my 
problems, which is, the previous problem was what does a receiver do 
if it saw a 2.5? Now it can't see a 2.5. But then the receiver asks, 
Agarwal, but what if I see a 2.5? I can tell the receiver you can do 
whatever you want to do. 
 
You can stomp it. You can squish it. You can burn it. You can chuck it. 
Whatever you want. It's up to you. Do whatever you want. You won't 
see a value. If you do, do whatever you want. It's undefined. 
 
That works. So you, as the receiver designer can do whatever you 
want when you see a 2.5. You can say yeah, I'll just put out a 1 if I 
see a 2.5 or a 2.6. I'll just do something. No one cares. So this is 
pretty good. 
 
This is pretty good. We still have a problem, though. Do people see 
the problem here? This still doesn't quite work. If Intel did this, instead 
of your laptops failing and blue-screening every hour they'd be doing it 
every millisecond. 
 
So the problem is this discipline have allowed the sender to send any 
value between 3 and 5 as a 1. And any value between 3 and 5 at the 
receiver is treated as a 1. Do you see where the problem is? Yes? The 
sender sends a 1.99 and the noise pumps it into forbidden region. 
 
Exactly. So the sender says it's legitimate, I'm Intel. They've told me 
stick to 0 and 2. And Intel parts will be sending to values between 0 
and 2. And Motorola parts, which are receivers, you know they have to 
receive 0 and 2. 
 
So Intel can send the value, 2. They can because it's 1.9 out of 2. It's 
legal. This way I can make really cheap parts. But now the problem is 
that even the smallest amount of noise will bump it into the forbidden 
region, and so therefore this one has a problem. 
 



And the problem is that this one offers zero noise margin. There is no 
noise margin. There is no margin for noise in the discipline. All right, 
back to the drawing board, folks. Switch to Page 8. 
 
Let's get rid of all this stuff and go back to the drawing board. OK, so 
what do we do now? How about the following? How, about as before I 
say, as a receiver, if you see a value between 3 and 5 you treat that 
as a 1 and a value between 0 and 2 you treat that as a 0. 
 
No difference. So as a receiver same as before. But now what I do is I 
hold the sender to tougher standards. I hold the feet of the sender to 
the fire and say you have to adhere to tougher standards. 
 
So what I'm going to do is hold the sender to tougher standards, 
maybe four walls. That is tell the sender that if you want to send to 0 
or a 1, for a 1 you have to send a value between 4 and 5, and for a 0 
a value between 0 and 1. 
 
Sender is now held to tougher standards. This is what my chart looks 
like. So now I do have some noise margin. Can someone tell me what 
is the noise margin here for a 1? 1 volt. And the reason is that the 
lowest voltage a sender can send is 4 volts, OK? If the 4 leaks down to 
2.99 that's in the forbidden region, I'm in trouble. 
 
2.99. This is my forbidden region here. And 2.99 is in the forbidden 
region. I'm in trouble. So notice that the lowest value that the receiver 
can receive is 3 volts. So if I sent the 4 and sent this over a long cable 
to you, the value can be beaten up by noise to such an extent that you 
may begin receiving 3s but nothing lower than a 3. 
 
So this is a noise margin, 1 volt. Similarly, for a 0 the noise margin is 
also 1 volt. So let me label these. There are four important thresholds 
here. This threshold is called VOL. V output low. 
 
These have special meanings. This threshold here is called VOH, V 
output high. This threshold here is called V input high and this 
threshold here is called V input low. So VOH simply says that senders 
must send voltages higher than VOH. 
 
Receivers must receive values higher than VIH as a 1. So these four 
thresholds together give you your threshold. For the sender gets 2.5, 
what does sender do? It could do that. So, in that case, you can do 
that. 
 



If all you want to do is have one value here then what you have is an 
infinitesimal value here for the forbidden region. That's fine. It's up to 
you to design it that way. You can. But it turns out that when you 
design circuits, when we see some examples in the next lecture it 
turns out to be fairly practical and easy to do it this way. 
 
But, again, these are design choices. If I'm Intel, Intel wants all its 
parts to work together. So parts that follow a common discipline can 
work together, right? Because senders will send values, receivers will 
receive these values here, so it will simply work. 
 
So the noise margin for a 1 here is simply VOH minus VIH and the 
noise margin for a 0 is VIL minus VOL. VIL minus VOL is the noise 
margin for a 0. So what do we have here? What we have here is a 
discipline that we've agreed to follow where senders are held to a 
tough standard and receivers are held to a different standard so that I 
allow myself some margin for error. 
 
And it's up to you as a designer to choose ranges for the forbidden 
region. Now, you may say that I want to make my forbidden region as 
small as possible. But you will see in practical circuits it's very hard to 
achieve that. 
 
Practical devices that you get, they have a natural region that gets 
very, very hard to break apart, and that tends to establish what that 
region looks like. So to continue with an example here, I may have the 
following voltage wave form for a sender. 
 
So I have some sender, I have a sender here. I have VOL, VIL, VIH, 
VOH and some other high voltage. And then, as a sender, if I want to 
send a "0" "1" "0" then I send a 0. I have to be within this band. 
 
And then for a 1 I have to be within this band. So this is an example 
of, say, "0" "1" "0" "1". And at the receiver -- Let's have VOL, VIL, 
VIH, VOH. So at the receiver, I interpret any signal below VIL as a 0. 
 
So I may get some signal that looks like this. And I'll still interpret that 
as a "0" "1" "0" "1". So to summarize here, this discipline that forms 
the foundations of digital systems is called "a static discipline". 
 
The static discipline says if inputs meet input thresholds -- So if an 
input to a digital system meets the input thresholds then outputs will 
meet, or the digital system should ensure that the outputs -- Output 
thresholds. 



 
So this means that if I have a system like this then if I give it good 
inputs. And by giving it good inputs I mean for 1s I have signal values 
that are greater than VIH and for 0s signal values which are less than 
VIL. 
 
These are valid inputs. So if my inputs are valid, that is below VIL for a 
0 and above VIH for a 1 then this digital system D will produce 
corresponding outputs that follow output thresholds. For a 1 it will 
produce outputs that are greater than VOH and if it needs to produce a 
0 it will produce outputs that are less than VOL. 
 
So notice that there is this tough requirement in digital systems that 
for the inputs, I should recognize as a 1 anything higher than a VIH. 
But if I want to produce a 1, I have to produce a tough 1 like a 4-volt 
1. 
 
So there is a discipline that all my digital systems must follow, and 
that discipline is called a static discipline. So static discipline encodes 
the thresholds, encodes four thresholds that all digital systems must 
follow so that they can talk to each other. 
 
So if Intel and Motorola want to make parts that are compatible with, 
say, Pentium 4 devices then they will all talk over the phone or 
something and agree on a static discipline. We will say that, all right, 
all my peripherals will follow a static discipline with the following volted 
thresholds. 
 
And this way parts made by different manufacturers can interoperate 
and still provide immunity to noise. Yes. Question? Absolutely. There 
are many constraints on how you as a designer choose the noise 
margin. 
 
As a designer you want to make your noise margin as large as 
possible. The larger the noise margin the better you can tolerate noise 
which is why, how many people have heard of some devices called rad 
hard devices, radiation hard devices? Some of you have. 
 
There are a bunch of devices. Different manufacturers make different 
kinds of devices for different markets. For consumer markets they use 
parts which may have relatively poor noise margins because 
consumers can tolerate more faults. 
 



But if you're building devices for, say, the medical industry or for 
spaceships and so on, you need to be held to a much, much tougher 
standard. So for those devices you may end up having much, much 
tighter bands in which you have to operate so you have a tougher 
noise margin. 
 
So that leads us to, given these sort of voltage thresholds, we now 
move into the digital world. And in the digital world we can build a 
bunch of digital devices. The first device we will look at is called a 
combinational gate. 
 
A combinational gate is a device that adheres to the static discipline, 
Page 11, and this is a device whose outputs are a function of inputs 
alone. So I can build little boxes which take some inputs, produces an 
output where the outputs are a function of the existing inputs. 
 
And this kind of a device is called a combinational gate. And I can 
analyze such devices for the kinds of things that I would like to do. 
Before I go into the kinds of devices I'd like to build, let's spend a few 
minutes talking about how to process signals. 
 
How to process digital signals, Page 10. So notice that you have two 
values, 0 and a 1. So devices like my combinational gate, for example, 
can only deal with 0s and 1s. So I have to come up with some kind of 
a mathematics or some kind of a set of processing that can work with 
0,1 values. 
 
So 0,1 map completely natural to the logic true and false. So I can 
borrow from logic and use true and false to do my processing of 
signals. So if all I care about is processing logic values, 0s and 1s, 
trues and falses then that's all I need. 
 
I can also use numbers. How do I represent a number? 3.9 which is 0s 
and 1s. It turns out that this is a whole field in itself. You'll hear more 
about this in recitation. Let me also point you to the last section of the 
course notes, Chapter 5.6 I believe, that talks about how to represent 
numbers. 
 
The basic insight is much like you can represent arbitrary long 
numbers with the digits 0 through 9 in the same way, but 
concatenating digits you can represent arbitrary long numbers with 0-
1-1-1-0-0 and so on. 
 



So you can have a whole sequence of digits and you can build a binary 
number system. So you can read A&L Section 5.6, I believe. It's the 
last section for numbers. And you will also discuss this in your 
recitation tomorrow. 
 
Let me spend some more time talking about Boolean logic, two-valued 
logic, and how to process these systems. So one way of processing it 
is using logic statements of the following form. If X is true and Y is 
true then Z is true, else is Z false. 
 
So this is a logic statement. It says if X is true and Y is true then Z is 
true, else Z is false. So I can process this with 0s and 1s, trues and 
falses. And I do this all the time so I have a succinct notation for this. 
 
I express this as Z is X anded with Y. X and Y is Z. So Z is true if X is 
true and Y is true. A shorthand notation for this is just a dot. And a 
circuit notation for this is called an "AND gate". 
 
That's a little circuit. I haven't told you what's inside it. It's an abstract 
little device called an AND gate which takes two inputs, produces one 
output Z where the output is related to the inputs in the following 
manner. 
 
That's a little device called an AND gate. I could also represent logic in 
truth tables. And truth tables simply enumerate all the values and the 
corresponding outputs. Inputs can be 0-0-0-1-1-0 or 1-1. 
 
For an AND system output is 1, only if both are ones, it's a 0 
otherwise. So that's a truth table for AND gate. So from 0s and 1s we 
deal with logic and we create devices like the AND gate to process 
digital signals. 
 
And what we will do is look at a whole bunch of little symbols like this, 
like the AND gate to process our input signals. And these devices 
might look like other functions like OR gates and so on. Let me show 
you a quick demo. 
 
What I'm going to show you is a signal feeding an AND gate. And one 
signal is going to look like this, and my signal Y is going to look like 
this. So you expect a processed output. So 1-0-1-0-1-0-1. 
 
And the output is simply going to be -- This is my time axis going this 
way. It is going to be an AND-ing of these two signal values like so. 



What I'm also going to show you is I'm going to superimpose noise on 
this wire. 
 
I'm going to superimpose noise on the wire, and what I want you to 
observe is the output of this digital gate. The output will stay exactly 
like this, even though I impose noise. The ultimate test. 
 
So stay right there. Let's do this demo. Give me a couple of seconds. 
If you look at the signal up there, look at the middle wave form, and 
I'm imposing let's have a digital system in a noisy environment like a 
lumberyard, for example, or chopping a bunch of trees in my backyard 
and building digital systems on the side. 
 
And if I have my buddies revving up chainsaws superimposing noise 
on my second input, but look at the output. And just to show that I'm 
not bluffing here, what I'll do is I'll pass the noise through and make 
the noise larger. 
 
And you'll notice that when the noise begins to surpass the noise 
margins the output begins to go berserk. Watch. Can you increase it 
gradually? Notice that as I put in a lot more noise then the output 
begins to go berserk, but as long as my input is within the noise 
margin my output stays perfectly stable. 
 
So that's the "Intro to Digital Systems". You'll see numbers in 
recitation. And we'll see you at lecture on Tuesday. 


