
MIT OpenCourseWare
http://ocw.mit.edu

6.004 Computation Structures
Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

M A S S A C H U S E T T S I N S T I T U T E O F T E C H N O L O G Y

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

6.004 Computation Structures
JSim

Contents:

1. Introduction to JSim
2. Running JSim
3. Netlist format
4. Device statements
5. User-defined subcircuits
6. Built-in subcircuits
7. Control statements
8. Running a simulation
9. Waveform browsing

1. Introduction to JSim

JSim is a computer-aided design (CAD) tool that provides:

• A simple editor for entering a circuit description (called a “netlist”)
• A choice of programs to simulate your circuit
• A waveform browser to view the results of a simulation

JSim uses mathematical models of circuit elements to make predictions of how a circuit will
behave both statically (DC analysis) and dynamically (transient analysis). The model for each
circuit element is parameterized, with each parameter providing information about the design or
physical properties of the device. You’ll specify the design parameters in your netlist, e.g., for a
mosfet you would specify its length and width. The parameters specifying physical properties
have been derived from measurements taken at the integrated circuit fabrication facility. We’ll
provide those parameters as part of the mosfet model.

6.004 Computation Structures - 1 - JSim

2. Running JSim

Running on Athena

We recommend using the computers in the 6.004 lab since JSim has been tested and is
known to run with satisfactory performance in that environment. Another benefit of using the
6.004 lab is that there’s plenty of help around, both from your fellow students and the course
staff. After signing onto the Athena station, add the 6.004 locker to gain access to the design
tools and model files (you only have to do this once each session):

athena% add 6.004

Start JSim running in a separate window by typing

athena% jsim &

It can take a few moments for the Java runtime system to start up, please be patient! JSim takes
as input a netlist that describes the circuit to be simulated. The initial JSim window is a very
simple editor that lets you enter and modify your netlist. You may find the editor unsatisfactory
for large tasks—it’s based on the JTextArea widget of the Java Swing toolkit that in some
implementations has only rudimentary editing capabilities. If you use a separate editor to create
your netlists, you can have JSim load your netlist files when it starts:

athena% jsim filename … filename &

Running standalone

First, you'll need to install a Java system. The Sun Java Runtime Environment, Standard Edition
(J2SE), for Linux, Solairs and Windows can be downloaded from http://java.sun.com. J2SE for
Mac OS X is available from http://www.apple.com/java. On Linux, you'll want to change your
PATH environment variable so that the "java" command is on your search path. On Windows and
OS X, double-clicking any of the 6.004 jar files will run the program (assuming you've installed
the Sun Java environment).

Once you've installed a Java environment and downloaded the 6.004 files (see "Quick Clicks"
above), you can run JSim using the following command:

java –jar jsim.jar –Xms8m –Xmx32m –reporterrors file…

You may have to specify complete pathnames for "java" and "jsim.jar" depending on your current
search path and working directory. Each of the arguments is explained below.

•	 -jar jsim.jar adds the java archive jsim.jar to the list of files Java examines when
trying to find classes. jsim.jar contains the classes used by jsim for displaying/editing
netlists, running simulations and browsing the results.

If you get an error of the form "Exception in thread "main"
java.lang.NoClassDefFoundError: jsim/JSim", the Java runtime didn't find the
jsim.jar file -- try giving its full pathname, e.g., C:\6.004\jsim.jar or whatever is
appropriate for your installation.

6.004 Computation Structures - 2 -	 JSim

http://java.sun.com
http://www.apple.com/java

•	 -Xms8m -Xmx32m sets the minimum heap size to 8MB and the maximum heap size to
32MB. Starting JSim with a generous heap allocation avoids a lot of garbage collection
overhead the first time your circuit is processed. If you run out of memory, try specifying
the -no-local-names option when running JSim. This will greatly reduce the size of the
node name hashtable JSim constructs when processing the netlist. The downside of using
this option is that nodes can only be referred to by using their name in the (sub)circuit
where they were first defined.

•	 -reporterrors asks JSim to provide a backtrace whenever it encounters an internal error.
In the unlikely event an error occurs, it would be very helpful if you can email this
backtrace to 6004-labs.

•	 file... are optional arguments specifying one or more JSim netlist files.

Editing netlists

The netlist editor built into JSim is based on the JTextArea class in Swing. Many people find the
editing facilities provided by this class to be underwhelming and prefer to use an external editor.
Jsim.el (available from the Courseware webpage) defines a new major mode for EMACS useful
for editing JSim netlists. You can invoke the mode automatically when reading in a ".jsim" file by
adding the following to your .emacs file:

;;; jsim support, assumes jsim.el lives in your home directory

(autoload 'jsim-mode "~/jsim" nil t)

(setq auto-mode-alist (cons '("\.jsim$" . jsim-mode) auto-mode-alist))

(add-hook 'jsim-mode-hook 'turn-on-font-lock)

JSim toolbar

There are various handy buttons on the JSim toolbar:

Exit. Asks if you want to save any modified file buffers and then exits JSim.

New file. Create a new edit buffer called “untitled”. Any attempts to save this buffer
will prompt the user for a filename.

Open file. Prompts the user for a filename and then opens that file in its own edit buffer.
If the file has already been read into a buffer, the buffer will be reloaded from the file
(after asking permission if the buffer has been modified).

Close file. Closes the current edit buffer after asking permission if the buffer has been
modified.

Reload file. Reload the current buffer from its source file after asking permission if the
buffer has been modified. This button is useful if you are using an external editor to
modify the netlist and simply want to reload a new version for simulation.

6.004 Computation Structures - 3 -	 JSim

http:6004-labs@lists.csail.mit.edu

Save file. If any changes have been made, write the current buffer back to its source file
(prompting for a file name if this is an untitled buffer created with the “new file”
command). If the save was successful, the old version of the file is saved with a “.bak”
extension.

Save file, specifying new file name. Like “Save file” but prompts for a new file name to
use.

Save all files. Like “save file” but applied to all edit buffers.

6.004 Computation Structures - 4 - JSim

3. Netlist format

Input to JSim is processed line-by-line. Fields within a line are separated by whitespace (blanks
or tabs), a comma, an "=" (equal sign), or a left or right parenthesis; extra spaces are ignored.
Blank lines are ignored during processing.

The circuit to be simulated is described to JSim by a set of element statements, which define the
circuit topology and element values, and a set of control cards, which define the model
parameters and the simulation controls. The order of the statements is arbitrary (except, of course,
that continuation lines must immediately follow the line being continued).

Continuation lines
A line may be continued by entering a "+" (plus) as the first character of the following line.
JSim will continue reading continuation lines starting with the second character. There's no
limit to the number of continuation lines allowed. Example:

.MODEL NENH NMOS LEVEL=3 PHI=0.700000 TOX=9.4000E-09
+ XJ=0.200000U TPG=1 VTO=0.6746 DELTA=1.1480E+00 LD=3.4510E-08
+ KP=1.8217E-04 UO=495.9 THETA=1.7960E-01 RSH=3.2470E+01

Comments
Lines whose first character is "*" (asterisk) are treated as comments and ignored during
processing. Note that comments can have continuation lines (see above). Examples:

* Both of the following lines are treated as a comment

*.MODEL NENH NMOS LEVEL=3 PHI=0.700000 TOX=9.4000E-09

+ KP=1.8217E-04 UO=495.9 THETA=1.7960E-01 RSH=3.2470E+01

You can also add comments at the end of a line by preceding the comment with the characters
“//” (C++- or Java-style comments). All characters starting with “//” to the end of the line
are ignored. Any portion of a line or lines can be turned into a comment by enclosing the text
in “/*” and “*/” (C-style comments). Examples:

R1 A B 3k // 3K-ohm resistor between nodes A and B

/* use when testing at high temps! But not now…

.temp 125

*/

Names
Each device and node in the circuit has a unique name. A name can be either a simple integer
(0 is reserved as the name of the ground node) or an alphanumeric string. The string is
sequence of characters consisting of letters, digits, "_", ":", "$", "[", "]", and ".". Strings
cannot begin with a digit and names begining with "$" are reserved for naming built-in
devices. "." (period) is reserved for use as a separator in hierarchical names. Examples:

R1

stdcell:and

This_is_a_very_long_name

cpu.alu.adder.bit31.carry_in

When naming a collection of nodes that serve as a bus it is convenient to use iterators to save
on having to enter many names sequentially. Iterators have the form

6.004 Computation Structures - 5 - JSim

 prefix[start:end]suffix

where start and end are integers specifying the first and last indicies of the sequence
respectively. JSim expands the iterator into |start-end| + 1 names substituting a different
value for the bracketed expression in each iteration. Examples:

data[7:0] => data7 data6 data5 data4 data3 data2 data1 data0
xxx[1:4]yyy => xxx1yyy xxx2yyy xxx3yyy xxx4yyy

One can also specify an increment between successive indicies using the form:

prefix[start:end:inc]suffix

Example:

 data[7:0:2] => data7 data5 data3 data1

More than one iterator can be used in a name; they are expanded from left to right:

a[3:0][1:0] 	 => a3[1:0] a2[1:0] a1[1:0] a0[1:0]

=> a31 a30 a21 a20 a11 a10 a01 a00

Note that using an iterator is exactly equivalent to specifying the expanded sequence:

* The following two element statements are equivalent

X1 out in[7:0] $xor

X1 out in7 in6 in5 in4 in3 in2 in1 in0 $xor

Finally, there’s a shortcut for specifying multiple copies of the same node:

foo#4 => foo foo foo foo

x[1:0]#2 => x[1:0] x[1:0] => x1 x0 x1 x0

Numbers
A number may be an integer (12, -44), a floating point number (3.14159), an integer or
floating point number followed by an integer exponent (1E-14, 2.65E3), or an integer or a
floating point number followed by one of the following scale factors:

Scale Factor Pronounced Multiplier
T, t tera 1E12
G, g giga 1E9
MEG, meg mega 1E6
K, k kilo 1E3
M, m milli 1E-3
U, u micro 1E-6
MIL, mil 25.4E-6
N,n nano 1E-9
P, p pico 1E-12
F, f femto 1E-15

Letters immediately following a number that are not scale factors are ignored and letters
immediately following a scale factor are ignored. Integers can be entered in binary, octal or
hexadecimal notation by using the appropriate prefix:

6.004 Computation Structures - 6 -	 JSim

0b1011101110100 6004 in binary (“0b” prefix)
013564 6004 in octal (“0” prefix)
0x1774 6004 in hex (“0x” prefix)

Examples:

* The following all represent the same numeric value
1000 1000.0 1000Hz 1E3 1.0E3 1kHz 1K 0x3E8 01750 0b1111101000

6.004 Computation Structures - 7 - JSim

4. Device statements

Each device in the circuit is specified by a device statement that specifies the device name, the
circuit nodes to which the device is connected, and the values of the parameters that determine
the electrical characteristics of the element. The first letter of the device name specifies the
element type, the remainder of the name can be any legal name (see above). For example, a
resistor name must begin with the letter “R” or “r”. Hence “R1”, “rse”, and “R3ac_2xy” are valid
resistor names. Device names must be unique at the level of circuit in which they appear.

In the following description, data field enclosed in braces (“{“ and “}”) are optional. All indicated
punctuation (parenthesis, equal signs, etc.) are required.

With respect to branch voltages and currents, JSim uniformly uses the associated reference
convention: current flows in the direction of voltage drop. The circuit cannot contain a loop of
voltage sources and/or inductors and cannot contain a cutset of current sources and/or capacitors.
Each node in the circuit must have a dc path to ground.

Rid n+ n- value // resistor, units in ohms, value > 0
Cid n+ n- value // capacitor, units in farads, value >= 0
Lid n+ n- value // inductor, units in henries, value >= 0

Linear devices. “n+” and “n-” are the two terminal nodes and “value” is the specified

resistance, capacitance, or inductance. Examples:

R1 1 2 1k // 1k ohm resistor between nodes 1 and 2
Rbias base 0 33ohms // 33 ohm resistor between nodes base and ground
CMILLER gate drain 1fF // 1 femtofarad capacitor
Lshunt a b 10u // 10 microhenry inductor

Mid nd ng ns nb model L=number W=number {params} // mosfet, units in meters
Mid nd ng ns nb model SL=number SW=number {params} // mosfet, scaled units

Mosfets.

The other new twist introduced in the example netlist is the use of symbolic dimensions for
the mosfets (“SW=” and “SL=”) instead of physical dimensions (“W=” and “L=”). Symbolic
dimensions specify multiples of a parameter called SCALE, which is also defined in
nominal.JSim:

.option SCALE=0.6u

Xid nodes.. subckt {params} // instance of user-defined subcircuit

Subcircuit instance.

Vid n+ n- {{DC=}dcvalue} {tran} // voltage source, units in volts
Iid n+ n- {{DC=}dcvalue} {tran} // current source, units in amperes

Independent sources. n+ and n- are the positive and negative nodes respectively. Note that
voltage sources need not be grounded. Positive current is assumed to flow from the positive
node, through the source, to the negative node. A current source of positive value will force
current to flow out of the n+ node, through the source, and into the n- node. Voltage sources,
in addition to be used for circuit excitation, are the "ammeters" for JSim, that is, zero-value
voltage sources may be inserted into the circuit for the purpose of measuring current. They

6.004 Computation Structures - 8 - JSim

will, of course, have no effect on circuit operation since they represent short-circuits.

The dcvalue is used during DC and OP analyses and the initialization phase of TRAN
analysis. If no dc specification is provided, a value of 0 is assumed.

Any source can be assigned a time-dependent value for transient analysis. If a source is
assigned a time-dependent value, the t = 0 value is used in place of any specified dc value.
There are six source functions: pulse, exponential, sinusoidal, piece-wise linear, amplitude
modulation and single-frequency frequency modulation. Each source function takes several
parameters that determine the shape of the waveform; the form of the specification can be any
of the following:

fname param1 param2 ... paramN

fname param1, param2, ... paramN

fname(param1 param2 ... paramN)

fname(param1, param2, ... paramN)

i.e., the parenthesis and commas are optional. The following paragraphs provide a detailed
description for each of the source functions.

more here…

Eid n+ n- ctl+ ctl- gain // voltage-controlled voltage source (VCVS)
Fid n+ n- ctl+ ctl- gain // current-controlled current source (CCCS)
Gid n+ n- ctl+ ctl- gain // voltage-controlled current source (VCCS)
Hid n+ n- ctl+ ctl- gain // current-controlled voltage source (CCVS)

Dependent sources.

more here…

Wid nodes… nrz(vlow,vhigh,tperiod,tdelay,trise,tfall) data…

The “W” voltage source that generates digital waveforms for many nodes (e.g., a bus) at
once. If N nodes are specified, think of them as an N-bit value where the node names are
listed most-significant bit first. The “W” source will set those nodes to a sequence of data
values using the data specified at the end of the “W” statement. At each step of the sequence,
the N low-order bits of each data value will be used to generate the appropriate voltage for
each of the N nodes. The voltage and timing of the signals is given by the nrz parameters:

vlow voltage used for a logic low value (usually 0)

vhigh voltage used for a logic high value (usually 3.3V)

tperiod interval (in seconds) at which values will be changed

tdelay initial delay (in seconds) before periodic value changes start

trise rise time (in seconds) for low-to-high transitions

tfall fall time (in seconds) for high-to-low transitions

Note that the times are specified in seconds, so don’t forget to specify the “n” scale factor
when entering times! Example:

.include "/mit/6.004/jsim/nominal.jsim"

Wtest a[2:0] nrz(0v,3.3v,10ns,0ns,.1ns,.1ns) 7 6 0x5

+ 0 1 0b010 3
.tran 80ns

 .plot a2

 .plot a1

6.004 Computation Structures - 9 - JSim

 .plot a0

 .plot a[2:0]

Note that you can specify data values in decimal, hex (“0x” prefix), octal (“0” prefix) or
binary (“0b” prefix). The last data value is repeated if necessary. This example produces the
following plot when run using the gate level simulator

JSim knows how to plot a set of nodes as a single multi-bit data value, as shown in the
bottom channel of the plot above. If you zoomed in on one of the transition times, you would
see that the values actually turn to “X” for 0.1ns while making the transition between valid
logic levels.

6.004 Computation Structures - 10 - JSim

5. User-defined subcircuits

.subckt name terminals…
* internal circuit elements are listed here

.ends

The “.subckt” statement introduces a new level of netlist. All lines following the “.subckt” up to
the matching “.ends” statement will be treated as a self-contained subcircuit. This includes model
definitions, nested subcircuit definitions, electrical nodes and circuit elements. The only parts of
the subcircuit visible to the outside world are its terminal nodes which are listed following the
name of the subcircuit in the “.subckt” statement:

Once the definitions are complete, you can create an instance of a subcircuit using the “X” circuit
element:

Xid nodes… name

where name is the name of the circuit definition to be used, id is a unique name for this instance
of the subcircuit and nodes… are the names of electrical nodes that will be hooked up to the
terminals of the subcircuit instance. There should be the same number of nodes listed in the “X”
statement as there were terminals in the “.subckt” statement that defined name. For example,
here’s a short netlist that instantiates 3 NAND gates (called “g0”, “g1” and “g2”):

.global vdd

Vdd vdd 0 3.3V

* 2-input NAND: inputs are A and B, output is Z

.subckt nand2 a b z

MPD1 z a 1 0 NENH sw=8 sl=1

MPD2 1 b 0 0 NENH sw=8 sl=1

MPU1 z a vdd vdd PENH sw=8 sl=1

MPU2 z b vdd vdd PENH sw=8 sl=1

.ends

Xg0 d0 ctl z0 nand2

Xg1 d1 ctl z1 nand2

Xg2 d2 ctl z2 nand2

The node “ctl” connects to all three gates; all the other terminals are connected to different nodes.
Note that any nodes that are private to the subcircuit definition (i.e., nodes used in the subcircuit
that don’t appear on the terminal list) will be unique for each instantiation of the subcircuit. For
example, there is a private node named “1” used inside the nand2 definition. When JSim
processes the three “X” statements above, it will make three independent nodes called “xg0.1”,
“xg1.1” and “xg2.1”, one for each of the three instances of nand2. There is no sharing of internal
elements or nodes between multiple instances of the same subcircuit.

It is sometimes convenient to define nodes that are shared by the entire circuit, including
subcircuits; for example, power supply nodes. The ground node “0” is such a node; all references
to “0” anywhere in the netlist refer to the same electrical node. The example netlist defines
another shared node called “vdd” which is used whenever a connection to the power supply is
required.

6.004 Computation Structures - 11 - JSim

JSim makes it easy to specify multiple gates with a single "X" statement. You can create
multiple instances of a device by supplying some multiple of the number of nodes it
expects, e.g., if a device has 3 terminals, supplying 9 nodes will create 3 instances of the
device. To understand how nodes are matched up with terminals specified in the .subckt
definition, imagine a device with P terminals. The sequence of nodes supplied as part of
the "X" statement that instantiates the device are divided into P equal-size contiguous
subsequences. The first node of each subsequence is used to wire up the first device, the
second node of each subsequence is used for the second device, and so on until all the
nodes have been used. For example, since xor2 has 3 terminals:

Xtest a[2:0] b[2:0] z[2:0] xor2

is equivalent to

Xtest#0 a2 b2 z2 xor2

Xtest#1 a1 b1 z1 xor2

Xtest#2 a0 b0 z0 xor2

There is also a handy way of duplicating a signal: specifying "foo#3" is equivalent to specifying
"foo foo foo". For example, xor'ing a 4-bit bus with a control signal could be written as

Xbusctl in[3:0] ctl#4 out[3:0] xor2

which is equivalent to

Xbusctl#0 in3 ctl out3 xor2

Xbusctl#1 in2 ctl out2 xor2

Xbusctl#2 in1 ctl out1 xor2

Xbusctl#3 in0 ctl out0 xor2

Using iterators and the “constant0” device from the standard cell library, here’s a better way of
connecting cmp[31:1] to ground:

Xgnd cmp[31:1] constant0

Since the “constant0” has one terminal and we supply 31 nodes, 31 copies of the device will be
made.

6.004 Computation Structures - 12 - JSim

6. Built-in subcircuits

$memory
$xxx

We’ll be using a new component this week: a multi-port memory. JSim has a built-in memory
device that can be used to model memories with a specified width and number of locations, and
with one or more ports. Each port has 3 control signals and the specified number of address and
data wires. You can instantiate a memory device in your circuit with a statement of the form

Xid ports… $memory width=w nlocations=nloc options…

The width and nlocations properties must be supplied: w specifies the width of each memory
location in bits and must be between 1 and 32. nloc specifies the number of memory locations
and must be between 1 and 220. All the ports of a memory access the same internal storage, but
each port operates independently. Each port specification is a list of nodes:

oe clk wen a … a d … d
naddr-1 0 w-1 0

where

oe is the output enable input for a read port. When 1, data is driven onto the data pins;
when 0, the output pins are not driven by this memory port. If this port is only a write port,
connect this terminal to the ground node “0”. If the port is only a read port and should
always be enabled, connect this terminal to the power supply node “vdd”.

clk is the clock input for write ports. When wen=1, data from the data terminals is written
into the memory on the rising edge of clk. If this port is only a read port, connect this
terminal to the ground node “0”.

wen is the write enable input for write ports. See the description of “clk” for details about
the write operation. If this port is only a read port, connect this terminal to the ground node
“0”.

a … a are the address inputs, listed most significant bit first. The values of these
naddr-1 0

terminals are used to compute the address of the memory location to be read or written. The
number of address terminals is determined from the number of locations in the memory:
naddr = ceiling(log2(nloc)). When the number of locations in a memory isn’t exactly a
power of 2, reads that refer to non-existent locations return “X” and writes to non-existent
locations have no effect.

d … d are the data inputs/tristate outputs, listed most significant bit first.
w-1 0

By specifying one of the following options it is possible to specify the initial contents of a
memory (if not specified, the memory is initialized to all X’s):

file="filename"
The memory is initialized, location-by-location, from bytes in the file. Data is assumed
to be in a binary little-endian format, using ceiling(w/8) bytes of file data per memory
location. Bits 0 through 7 of the first file byte are used to initialize bits 0 through 7 of
memory location 0, bits 0 through 7 of the second file byte are used to initialize bits 8

6.004 Computation Structures - 13 - JSim

through 15 of memory location 0, and so on. When all the bits in a memory location
have been filled, any bits remaining in the current file byte are discarded and then the
process continues with the next memory location. In particular, the “.bin” files produced
by BSim can be used to initialize JSim memories. For example, the following statement
would create a 1024-location 32-bit memory with three ports: 2 read ports and 1 one
write port. The memory is initialized from the BSim output file “lab6.bin”.

Xmem
+ vdd 0 0 ia[11:2] id[31:0] // (read) instruction data
+ vdd 0 0 ma[11:2] mrd[31:0] // (read) program data (LDs)
+ 0 clk wr ma[11:2] mwd[31:0] // (write) program data (STs)
+ $memory width=32 nlocations=1024
+ file="/mit/6.004/bsim/lab6.bin"

contents=(data…)
The memory is initialized, location-by-location, from the data values given in the list.
The least significant bit (bit 0) of a value is used to initialize bit 0 of a memory location,
bit 1 of a value is used to initialize bit 1 of a memory location, etc. For example, to enter
the short test program ADDC(R31,1,R0); ADDC(R31,2,R1); ADD(R0,R1,R2) one might
specify:

Xmem
+ vdd 0 0 ia[11:2] id[31:0] // (read) instruction data
+ vdd 0 0 ma[11:2] mrd[31:0] // (read) program data (LDs)
+ 0 clk wr ma[11:2] mwd[31:0] // (write) program data (STs)
+ $memory width=32 nlocations=1024
+ contents=(0xC01F0001 0xC03F0002 0x80400800)

Initialized memories are useful for modeling ROMs (e.g., for control logic) or simply for loading
programs into the main memory of your Beta. One caveat: if the memory has a write port and
sees a rising clock edge with its write enable not equal to 0 and with one or more of the address
bits undefined (i.e., with a value of “X”), the entire contents of the memory will also become
undefined. So you should make sure that the write enable for a write port is set to 0 by your
reset logic before the first clock edge, or else your initialization will be for naught.

The following options can be used to specify the electrical and timing parameters for the memory.
For this lab, these should not be specified and the default values used.

tcd=seconds
the contamination delay in seconds. Default value = 20ps.

tpd=seconds
the propagation delay in seconds. This is how long it takes for changes in the address or
output enable terminals to be reflected in the values driven by the data terminals. Default
value is determined from the number of locations:

Number of locations tPD Inferred
type

nlocations ≤ 128 2ns Register file
128 < nlocations ≤ 1024 4ns Static ram
nlocations > 1024 40ns Dynamic ram

6.004 Computation Structures - 14 - JSim

tr=seconds_per_farad
the output rise time in seconds per farad of output load. Default value is 1000, i.e., 1
ns/pf.

tf=seconds_per_farad
the output fall time in seconds per farad of output load. Default value is 500, i.e., 0.5
ns/pf.

cin=farads
input terminal capacitance in farads. Default value = 0.05pf.

cout=farads
output terminal capacitance in farads. Default value = 0pf (additional tPD due to output
terminal loading is already included in default tPD).

The size of a memory is determined by the sum of the sizes of the various memory building
blocks shown in the following table:

Component Size (μ2) Notes
Storage cells nbits * cellsize nbits = nlocs * width

cellsize = nports (for ROMs and DRAMS)
cellsize = nports + 5 (for SRAMS)

Address buffers nports * naddr * 20 nports = total number of memory ports
Address decoders nports * (naddr+3)/4 * 4 Assuming 4-input ANDs
Tristate drivers nreads * width * 30 nreads = number of read ports
Write-data drivers nwrites * width * 20 nwrites = number of write ports

6.004 Computation Structures - 15 - JSim

7. Control statements

.checkoff

info…

.connect node1 node2 node3...

The .connect statement is useful for connecting two terminals of a subcircuit or for
connecting nodes directly to ground. For example, the following statement ties nodes cmp1,
cmp2, ..., cmp31 directly to the ground node (node "0"):

.connect 0 cmp[31:1]

Note that the .connect control statement in JSim works differently than many people expect.
For example,

.connect A[5:0] B[5:0]

will connect all twelve nodes (A5, A4, ..., A0, B5, B4, ..., B0) together – usually not what
was intended. To connect two busses together, one could have entered

.connect A5 B5

.connect A4 B4
 ...

which is tedious to type. Or one can define a two-terminal device that uses .connect
internally, and then use the usual iteration rules (see next section) to make many instances of
the device with one "X" statement:

.subckt knex a b

.connect a b

.ends

X1 A[5:0] B[5:0] knex

.dc

info…

.end

info…

.global

info…

.include

info…

.model

info…

.mverify

info…

.op

info…

.options

info…

6.004 Computation Structures - 16 - JSim

.plot

info…

.plotdef

info…

.subckt
… circuit description…

.ends

info…

.temp

info…

.tempdir

info…

.verify

info…

6.004 Computation Structures - 17 - JSim

8. Running a simulation

Stop simulation. Clicking this control will stop a running simulation and display
whatever waveform information is available.

Device-level simulation. Use a Spice-like circuit analysis algorithm to predict the
behavior of the circuit described by the current netlist. After checking the netlist for errors, JSim
will create a simulation network and then perform the requested analysis (i.e., the analysis you
asked for with a “.dc” or “.tran” control statement). When the simulation is complete the
waveform window is brought to the front so that the user can browse any results plotted by any
“.plot” control statements.

Fast transient analysis. This simulation algorithm uses more approximate device models
and solution techniques than the device-level simulator but should be much faster for large
designs. For digital logic, the estimated logic delays are usually within 10% of the predictions of
device-level simulation. This simulator only performs transient analysis.

Gate-level simulation. This simulation algorithm only knows about gates and logic
values (instead of devices and voltages). We’ll use this feature later in the term when trying to
simulate designs that contain too many mosfets to be simulated at the device level.

Switch to waveform window. In the waveform window this button switches to the editor
window. Of course, you can accomplish the same thing by clicking on the border of the window
you want in front, but sometimes using this button is less work.

Using information supplied in the checkoff file, check for specified node values at given
times. If all the checks are successful, submit the circuit to the on-line assignment system.

6.004 Computation Structures - 18 - JSim

9. Waveform browsing

The waveform window shows various waveforms in one or more “channels.” Initially one
channel is displayed for each “.plot” control statement in your netlist. If more than one waveform
is assigned to a channel, the plots are overlaid on top of each using a different drawing color for
each waveform. If you want to add a waveform to a channel simply type in the appropriate
signal name to the list appearing to the left of the waveform display (the name of each signal
should be on a separate line). You can also add the name of the signal you would like displayed
to the appropriate “.plot” statement in your netlist and rerun the simulation.

If you simply name a node in your circuit, its voltage is plotted. You can also ask for the current
through a voltage source by entering “I(Vid)”.

Interpreting analog signal levels as logic values can be tedious. JSim will do it for you
automatically if you ask to plot “L(a)” instead of just “a”. The logic-high and logic-thresholds
are determined by the “vih” and “vil” options:

.options vih=2.6 vil=0.6

Initial values are specified in “/mit/6.004/jsim/nominal.jsim”, but you can respecify them in your
own netlist. Voltages between vil and vih are displayed as a filled-in rectangle to indicate that the
logic value cannot be determined. For example:

A

L(A)

vih
vil

You can also ask for the values of a set of signals to be displayed as a bus, e.g.,
“L(a3,a2,a1,a0)”. The signals should be listed most-significant bit first. A bus waveform is
displayed as a filled-rectangle if any of the component signals has an invalid logic level or as a
hexadecimal value otherwise. In the following plot the four signals a3, a2, a1 and a0 are
interpreted as a 4-bit integer where the high-order bit (a3) is making a 1→0 transition. The filled-
in rectangle represents the period of time during which a3 transitions from VIH to VIL.

L(a3,a2,a1,a0) 0xF 0x7

The default display radix for a bus is hexadecimal, but you can ask for other radicies as well:

L(…) hexadecimal display, unsigned number

d(…) decimal display, unsigned number

sd(…) decimal display, signed two’s-complement number

b(…) binary display, unsigned number

o(…) octal display, unsigned number

x(…) hexadecimal display, unsigned number (same as “L”)

6.004 Computation Structures - 19 - JSim

It’s also possible to define your own “symbolic” display using plotdef, for example:

.plotdef numbers zero one two three four five six seven eight nine ten
+ eleven twelve thirteen fourteen fifteen

When you plot a bus using numbers(…), the value of the bus is used as an index into the table of
strings and the resulting string is displayed in the plot:

L(a3,a2,a1,a0)

numbers(a3,a2,a1,a0)

0xF 0x7 0x0

fifteen seven zero

Making Measurements

Each waveform plot has an oscilloscope-like grid in the background. The scale for each division
is shown at the bottom left-hand corner of the plot. You can change the scale by using the zoom
buttons at the bottom of the browser window (or you can use the “X” or “x” keyboard shortcuts).

The scrollbar at the bottom of the browser window can be used to pan along the horizontal
dimension of the plot. Or you can use the “c” keyboard shortcut to recenter the plot at the current
mouse position.

As you move the mouse over a particular waveform plot, a crosshair cursor follows the first
waveform found above the current mouse position. The readout in the upper left-hand corner of
the plot gives the current coordinates of the crosshair cursor.

To measure an interval on the plot, position the crosshair cursor at one end of the interval, click
and drag the mouse to the other end of the interval. A second crosshair cursor will appear as you
drag the mouse, and a second readout line gives the current coordinates of the second cursor as
well as the delta between the two cursors’ coordinates.

The Waveform Toolbar

The waveform window has several other buttons on its toolbar:

Select the number of displayed channels; choices range between 1 and 16.

Print. Prints the contents of the waveform window (in color if you have a color printer!).
If you are using Athena, you have to print to a file and then send the file to the printer: select
"file" in the print dialog, supply the name you'd like to use for the plot file, then click "print".
You can send the file to one of the printers in the lab using "lpr", e.g., "lpr -Pcs foo.plot".

You can zoom and pan over the traces in the waveform window using the control found along the
bottom edge of the waveform display:

6.004 Computation Structures - 20 - JSim

zoom in. Increases the magnification of the waveform display. You can zoom in around
a particular point in a waveform by placing the cursor at the point on the trace where you want to
zoom in and typing upper-case “X”.

zoom out. Decreases the magnification of the waveform display. You can zoom out
around a particular point in a waveform by placing the cursor at the point on the trace where you
want to zoom out and typing lower-case “x”.

surround. Sets the magnification so that the entire waveform will be visible in the
waveform window.

The scrollbar at the bottom of the waveform window can be used to scroll through the
waveforms. The scrollbar will be disabled if the entire waveform is visible in the window. You
can recenter the waveform display about a particular point by placing the cursor at the point
which you want to be at the center of the display and typing “c”.

6.004 Computation Structures - 21 - JSim

