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Finite State Machines

Problem 1. The ACME Company has recently received an order from a Mr. Wiley E. Coyote for their 
all-digital Perfectly Perplexing Padlock. The P3 has two buttons ("0" and "1") that when pressed cause 
the FSM controlling the lock to advance to a new state. In addition to advancing the FSM, each button 
press is encoded on the B signal (B=0 for button "0", B=1 for button "1"). The padlock unlocks when the 
FSM sets the UNLOCK output signal to 1, which it does whenever the last N button presses correspond 
to the unique N-digit combination. 

A.   Unfortunately the design notes for the P3 are incomplete. Using the specification above and 
clues gleaned from the partially completed diagrams below fill in the information that is missing 
from the state transition diagram with its accompanying truth table. When done 

�❍     each state in the transition diagram should be assigned a 2-bit state name S1S0 (note that 
in this design the state name is not derived from the combination that opens the lock),

�❍     the arcs leaving each state should be mutually exclusive and collectively exhaustive,
�❍     the value for UNLOCK should be specified for each state, and 
�❍     the truth table should be completed.

 

B.  What is the combination for the lock? 



Problem 2. Construct a "divisible-by-3" FSM that accepts a binary number entered one bit at a time, 
most significant bit first, and indicates with a light if the number entered so far is divisible by 3. 

A.   Draw a state transition diagram for your FSM indicating the initial state and for which states 
the light should be turned on. Hint: the FSM has 3 states. 

B.   Construct a truth table for the FSM logic. Inputs include the state bits and the next bit of the 
number; outputs include the next state bits and the control for the light. 

C.  Draw a logic schematic for the FSM. 

Problem 3. 

A.  An FSM, M, is constructed by connecting the output of a 3-state FSM to the inputs of an 9-state 
FSM. M is then reimplemented using a state register with the minimum number of bits. What is 
the maximum number of bits that may be needed to reimplement M? 

B.  You connect M N-state FSMs, each have 1 input and 1 output, in series. What's an upper bound 
on the number of states in the resulting FSM? 

Problem 4. Ben Bitdiddle has designed an electronic lock with three buttons: "reset", "0" and "1". He has 
provided the following state transition diagram showing how the lock responds to a sequence of inputs. 

The lock makes a transition from its current state to a new state whenever one of the three buttons is 
pressed and released. It ignores its inputs if more than one button is pressed. Pressing "reset" returns the 



lock to the state marked "R" in the diagram (arcs showing the transitions to the reset state have been 
omitted from the diagram to make it easier to read). Pressing "0" or "1" will cause the lock to follow the 
appropriately labeled transition from its current state. The lock opens if it reaches the state marked "U". 

A.  After pressing the "reset" button what is the length of the shortest sequence of button presses that 
will open the lock? 

B.  After pressing the "reset" button what is the length of the longest sequence of button presses that 
will cause the lock to open after the last button in the sequence is pressed but not open any earlier 
in the sequence? 

C.  After much use, the "reset" button breaks. Is it still possible to open the lock using only the "0" 
and "1" buttons assuming you know nothing about the lock's state (except that its locked!) when 
you start? 

D.  Suppose Ben wanted to design a lock that required exactly 10 button presses to open after 
pressing "reset". Not counting the "reset" and "unlock" states, what is the minimum number of 
state his FSM would need need? 

Problem 5. Stimulated by Tuesday's lecture, you have decided to cover MIT's steep tuition costs by 
selling simple digital locks based on the neat six-state FSM used as an example: 

 

Recall that this design has three buttons labeled "0", "1", and "Start", and generates an unlock signal 
U=1 when the user presses Start followed by the sequence 0,1,1,0. 

Unfortunately your partner, Mark Ting, insists that the 6.004 design is way too complex for normal users 



to understand. After asking you to help figure out how to make his watch stop beeping ("I never could 
figure out how to operate this damned thing"), Mark questions the need for a Start button. If 0110 is the 
combination, he argues, why can't I just walk up and enter 0,1,1,0 and have the lock open? After some 
reflection, you conclude that he may have a point. 

A.  Design a FSM whose inputs are simply "0" and "1" buttons, whose output is the U (unlock) 
signal, and which has the property that U=1 if and only if the last four button presses correspond 
to the sequence 0,1,1,0. Show the state transition diagram corresponding to your design. [HINT: 
5 states are sufficient]. 

B.  Is it possible that an equivalent FSM might be implemented in fewer than 5 states? Explain. 

C.  The flip flops used to hold your FSM state contain random values when power is first applied to 
your lock. Does this constrain your handling of unused states? Explain. 

D.  In a table (similar to that shown in lecture), give the contents of a ROM that might be used in an 
implementation of your design. Completely specify the ROM contents, including those 
corresponding to unused states. 

Problem 6. Ben Bitdiddle has designed an electronic lock with three buttons: "Breset", "B0" and "B1". 
He has provided the following circuit diagram showing how the lock is implemented from a ROM and 3 
flip-flops. 



 

The button circuitry converts each button press into a single pulse guaranteed to be stable the required 
amount of time before and after the rising edge of the clock. For example, pressing "B0" once produces 
the following waveform: 

 

In answering the questions below, assume that the value of the UNLOCK output is only a function of the 
current state. 

A.  What is the total number of bits in the ROM? 

B.  The timing specifications for components are: 

ROM: tCD=3ns, tPD=11ns 
D flip-flop: tCD=2ns, tPD=4ns, tS=3ns, tH=3ns 



How long before the rising edge of CLK must the button circuitry guarantee that the button 
signals are stable? 

C.  Assume that all combinations start with pressing the "Breset" button. Ben wants to program the 
lock with the longest possible combination. Not counting the "Breset" button press, what is the 
longest combination Ben can achieve? 

D.  If the lock is programmed not to change state if no buttons are pressed, what is the next state field 
of ROM location 48 (i.e., the location corresponding to A5,A4,A3,A2,A1,A0 = 110000)? 

E.  The following table shows one possible contents of the first 32 locations of the ROM; assume 
that all other locations have the value "0010". The location is listed as A5,A4,A3,A2,A1,A0, the 
data is listed as D3,D2,D1,D0. 

 

If the lock is programmed with this ROM data, what happens when "B0" and "B1" are pressed at 
the same time? Assume that "Breset" is not pressed. 

F.  If the lock is programmed with this ROM data, what is the shortest combination that opens the 
lock after "Breset" has been pressed? 

G.  Suppose that the "Breset" button breaks while the lock is locked. Is it still possible to open the 
lock using a predetermined sequence of presses of the "B0" and "B1" buttons? Assume you know 
nothing about the lock's state (except that it's locked!) when you start. 



Problem 7. Use the following circuit in answering the questions below. 

 

Each of the edge-triggered D flip-flops has a setup time of tS, a hold time of tH, a propagation delay of 
tPD and a contamination delay of tCD. Assume that IN is stable tS before the rising edge of CLK and tH 
after the rising edge of CLK. 

A.  In order for the circuit shown above to operate correctly what constraints on tH and tS are 
necessary? Express them in terms of tCD, tPD and the clock period. 

B.  What is the minimum clock period at which this circuit can be clocked and still be guaranteed to 
work? Express your answer in terms of tH, tS, tCD and tPD. Assume that timing constraints that 
do not depend on the clock period are met. 

C.  For just this question suppose there is skew in the CLK signal such that the rising edge of CLK 
arrives at the flip-flop labeled F1 1ns before it arrives at the other three flip-flops. Assume that 
hold times are not violated. How does this change the minimum clock period at which the circuit 
above can be clocked and still be guaranteed to work? 

D.  Consider following waveform plot for the circuit above. Assume that IN is stable tS before the 
rising edge of CLK and tH after the rising edge of CLK and that time T is more than tPD after the 
preceding rising edge of CLK. 

 



What is the value of OUT at time T? 

E.  View the circuit above as an FSM with one input and one output. How many non-equivalent 
states does it have? 

Problem 8. Consider the following FSM state transition diagram: 

 

Let's see if there is an equivalent state machine with fewer states by checking to see if any states in the 
diagram above are equivalent. Two states are equivalent if (1) they have identical outputs and (2) for 
each possible combination of inputs they transition to equivalent states. 

A.  Start by filling in a "compatibility table" like the one shown below. Place an "X" in square (SI,SJ) 
if SI produces a different output from SJ. 

 

B.  For each non-X square (SI,SJ) write in pairs of states that have to be equivalent in order for SI 
and SJ to be equivalent. For example, for S2 to be equivalent to S5, then S1 (where S2 goes with 
a "0" input) has to be equivalent to S5 (where S5 goes with a "0" input). 



 

C.  Finally, look at an entry (SI,SJ). If entry is "SM,SN" and if (SM,SN) has an "X", put an "X" in 
square (SI,SJ). Repeat until no more squares can be X'ed out. The remaining squares indicate 
equivalent states. Show the final state (no pun intended) of your compatibility table. 

D.  Draw the state transition diagram for the simplified FSM. 


