
MIT OpenCourseWare
http://ocw.mit.edu 

6.004 Computation Structures 
Spring 2009 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms


1

A Student’s Guide 

to the Digital World

by Margaret Chong



2

Special thanks go out to my best friends in the world – Joe and Bonnie. Where

would I be without your support and hugs. =)

Thank you Professor Terman and Professor Ward for giving me the opportunity

to teach and realize one of my true passions.

Acknowledgements



3

Table of Contents

Binary ............................................. 4 Assembly Language ............................. 24

Octal and Hexadecimal .................. 4 Arithmetic Operations .......................... 24

Load ..................................................... 25
Binary Addition .............................. 5

Store ..................................................... 26
Binary Subtraction ......................... 5

Branch .................................................. 26

Hamming Distance ......................... 6
RISC Processor Architecture ............... 27

Information ..................................... 7
Arithmetic Operations .......................... 28

Huffman Encoding ......................... 7
Load ..................................................... 29

The Digital Abstraction .................. 8 Store ..................................................... 30

Combinational Devices .................. 9 Branch .................................................. 31

Static Discipline ............................. 9
Intro to Stacks ...................................... 32

NFETs ............................................ 10 Stack Macros ........................................ 32

PFETs ............................................. 10 Stack Frames ........................................ 35

CMOS Inverter ............................... 10 Two-level Stack example ..................... 35

CMOS Logic .................................. 11
The Memory Hierarchy ........................ 39

CMOS Logic Gates ........................ 13 Locality …………............................. 39

Boolean Algebra ............................ 13 Fully-Associative Cache ...................... 40

Building Circuits with Logic Gates 14 Direct-Mapped Cache .......................... 43

Contamination Delay ..................... 14 N-Way Set-Associative Cache ............. 46

Propagation Delay .......................... 15 Locality and Data Block Size ………. 49

Replacement Policies ........................... 51
Sum of Products ............................. 15

Write Policies ....................................... 51
Karnaugh Maps .............................. 16

Virtual Memory .................................... 52
Lenient Combinational Logic ........ 16

Linear Page Table ................................ 53
Mux ................................................ 17

Hierarchical Page Map ......................... 53
ROM/PLA ...................................... 17

Translation Look-aside Buffer ............. 54

Latch ............................................... 18 Caches – Virtual or physical addresses 54

Flip Flop ......................................... 18 MMU Overview ................................... 55

Flip Flop Circuits ........................... 19
References ............................................ 56

Finite State Machines (FSMs) ........ 20

Metastability .................................. 21

Unpipelined Circuits ...................... 22

Pipelined Circuits ........................... 22



4

Binary

1    1   0    0

There are two types of binary used in 6.004 – unsigned and signed (also known as two’s

complement). Let’s take a binary number 11002 and figure out its decimal equivalent.

Unsigned   23   22    21  20              23 +  22      = 8 + 4 = 12 

Signed        23   22   21  20          (-1)(23) +  22  = -8 + 4 = -4

(1) The space to the left of the decimal point is for 20, increasing by a power of two

as you go further left, decreasing by a power of two as you go right

(2) For each 1 in the binary number, add the corresponding power of two to the sum

(3) Unsigned binary - everything in the sum is positive

(4) Signed binary – the leftmost space in the number is negative
Note: If the leftmost space is a 0, then everything in the sum is positive. For example,

            1100  = -8 + 4 = -42

          01100  =  8 + 4 = 12      ! the leftmost 0 means we don’t count the –162

Octal and Hexadecimal

Octal is base 8 and is made of groups of 3 bits

Hexadecimal is base 16 and is made of groups of 4 bits

1   1    1    1     0    0    1    1    0    1    1    1

     7 4               6            7

F 3 7

Binary

Octal

Hexadecimal

Binary   Octal

  000          0

  001          1

  010          2

  011          3

  100          4

  101          5

  110          6

  111          7

Binary   Hex Binary   Hex

  0000      0   1000      8

  0001      1   1001      9

  0010      2   1010      A

  0011      3   1011      B

  0100      4   1100      C

  0101      5   1101      D

  0110      6   1110      E

  0111      7   1111      F

Useful Conversion Tables:



5

Signed Binary Addition

Binary addition is the same as regular addition, except you only have 0’s and 1’s.

    3

+  5

    8

         1

   00011

+ 00101

           0

       11

   00011

+ 00101

         00

     111

   00011

+ 00101

       000

     111

   00011

+ 00101

     1000

     111

   00011

+ 00101

   01000

1+1 = 2 = 10 in binary, so carry the 1

Most machines have a fixed number of bits. In the example above, the operands are both

5 bits wide, therefore the result can only be expressed in 5 bits. This introduces the

possibility that the sum might be incorrect.

    3

+  5

   ??

       1

   0011

+ 0101

         0

     11

   0011

+ 0101

       00

   111

   0011

+ 0101

     000

   111

   0011

+ 0101

   1000

-8 is incorrect!

We cannot express 8

in four bits

    -8

+  -8

   ??

       

   1000

+ 1000

    

 1     0 is incorrect!
   1000

+ 1000 We cannot express –16 in four bits
   0000

Let’s do this by example, say we’re subtracting 3 minus 5

(1) Represent 3 and 5 in binary

(2) Figure out the binary representation for negative 5 by flipping the bits and adding one

(3) Compute 3 plus negative 5

    3

-  5

  -2

3 = 00011
1

5 = 00101

3  =    00011
2

-5 =   11010

       + 00001

          11011

       11

   00011
3

+ 11011

Signed Binary Subtraction

   11110

Note that, like in binary addition, we are constrained to a fixed number of bits. Therefore,

you might encounter cases where the “flip the bits and add one” cannot be represented in

some fixed number of bits. You may also find that the result cannot be represented in

some fixed number of bits.



6

Hamming Distance

One factor to consider when transmitting a message is the possibility that the message

might get corrupted in transit. For example, say we’re transmitting the outcome of a coin

flip over the internet. There are two possible outcomes – heads or tails.

One possible encoding uses only one bit: heads = “0” and tails = “1”. We tell our friend 

that the coin flipped heads by transmitting a “0.” However, a routing wire is struck

by lightning, changing the bit to a “1.” Our friend will incorrectly think tails.

H
0 1

T

If we increase the number of bits in the encoding to two bits (heads = 00 and tails = 11),

we can detect single-bit errors. However, we still cannot correct them.

H
00 10 or 01

H or T?

With three bits, however, we can detect single and two-bit errors, and we can correct

single bit errors (heads = 000 and tails = 111).

H
000 100 or 010 or 001

H

For two encodings of the same length, the Hamming Distance (D) is the number of bits

you need to change to turn one into the other. We increased the Hamming Distance by one

in each step of this example. (I) D = 1 (II) D = 2 (III) D = 3.

If you have a Hamming Distance of D, then you can:

I

II

III

DETECT (D – 1) bit errors      and       CORRECT (D – 1) bit errors

                 2



7

Information

A message carries information if it tells you something new. The higher the probability of

receiving that message, the less information that message carries. There are three basic

equations you need to know:

Non-equivalent probability for all choices     Equivalent probability for all choices

Average # bits of information = ! pi log2
_1_

  pi

# bits of information = log2 _1_

  pi

# bits of information = log2 _# choices before_

    # choices after

Huffman Encoding

We can encode symbols using a sequence of bits. Huffman encoding is merely one of the ways

we can assign a symbol to a sequence of bits. The algorithm proceeds as follows:

(1) Choose the two members/subtrees with the lowest probability

(2) Label one a “0” and the other a “1” 

(3) Connect them into a new subtree, and add their probabilities to produce

      the probability of the new subtree

(4) Repeat 1-3 until you’re left with one big tree

This example illustrates Huffman encoding for the symbols A, B, C, and D with their

corresponding probabilities:

A, pA = 0.5

B, pB = 0.125

C, pC = 0.125

D, pD = 0.25

A,   pA   = 0.5

BC, pBC = 0.25

D,   pD   = 0.25

A,   pA   = 0.5

BCD, pBCD = 0.5

B       C

 1        0

B       C

 1        0    D

 1        0

ABCD,   pABCD   = 1

B       C

 1        0    D

 1        0     A

 1        0

Encodings: A = 0

B = 111

C = 110

D = 10



8

The Digital Abstraction

In the digital world, a voltage can represent a valid “0”, a valid “1”, or an invalid signal “X”

(a voltage in the forbidden zone). Voltage is continuous, therefore we define boundaries to

indicate whether it’s a 0, 1, or X.

The world is not ideal, however, so we must ensure that a “0” will never be mistaken for

anything else. This is done by applying stricter boundaries to the outputs of combinational

logic blocks (VOL and VOH) and more lenient boundaries on the inputs (VIL and VIH).

The difference between these two boundaries is called a noise margin. There are two noise

margins: NML=LOW and NMH=HIGH. Think of NML as the amount of voltage it takes to turn

a “0” into an “X”, and NMH as the amount of voltage it takes to turn a “1” into an “X.”

NML = VIL – VOL NMH = VOH – VIH

        Noise Margin of a combinational logic block = NM = min(NML, NMH)

XNML NMH

Volts

“0” output “1” output

VOL VIL VIH

“1” input“0” input

Forbidden Zone

VOH

Device
Noise

Capacitance

…

VIN VOUT



9

Combinational Devices and Static Discipline

A buffer basically takes in a “0” and outputs a “0”, or takes

in a “1” and outputs a “1”. The buffer symbol is shown

above. The graph on the left is the buffer’s Voltage

Transfer Curve (VTC). The valid regions are located in the

lower left and upper right corners of the curve. The shaded

region in the middle is the invalid Forbidden Region.

Gain is the slope in the forbidden region of the VTC.

Note that the |gain| > 1 in order for the buffer to be

classified as a combinational device. If it isn’t, you might

get negative noise margins or the signal will degrade when

you cascade the device.

VIN VOUT

VIN VOUT

Static Discipline:

If VIN < VIL then VOUT < VOL

If VIN > VIH then VOUT > VOH

Static Discipline:

If VIN < VIL then VOUT > VOH

If VIN > VIH then VOUT < VOL

An inverter takes in a “0” and outputs a “1”, or takes in a

“0” and outputs a “1”. Note that the inverter must also

have |gain| > 1 in order to be a combinational device.

When choosing values for VOL, VIL, VIH, VOH, there is no

set algorithm. The best way is to gain intuition from

practice.

Some rules of thumb might include:

VOL

VOH

VIL VIH

Forbidden Region
Vout

Vin

gain

0

0

1

1

VOL

VOH

VIL VIH

Forbidden Region
Vout

Vin

gain

0

0 1

1

(1) Pick VOH and VOL around the corners where the flat region meets the steep region

(2) If you’re trying to maximize the noise margins, try to chose the highest VOH and the

lowest VOL possible

(3) If you’re trying to maximize the noise margins, first find a VOL, VIL, VIH, VOH that

adheres to the static discipline. Then try to make one of the noise margins bigger by

altering one of VOL, VIL, VIH, VOH and see if the new values adheres to the static

discipline.

Inverter

Buffer



10

NFET pulldowns

A NFET can be categorized into three “analog” regions –

cutoff, linear, and saturation - and two “digital”regions – on

and off.

Off/Cutoff:    VGS < VTH

On/Linear:    VGS > VTH, VDS < VDSsat

On/Saturation: VGS > VTH, VDS > VDSsat

   Where VDSsat = VGS – VTH

    VTH = a set Threshold Voltage

G

D

S

VDS

VGS

PFET pullups

A PFET also has three “analog” regions – cutoff, linear, and

saturation - and two “digital”regions – on and off.

Off/Cutoff:    VGS > VTH

On/Linear:    VGS < VTH, VDS > VDSsat

On/Saturation: VGS < VTH, VDS < VDSsat

   Where VDSsat = VGS - VTH

G

D

S

VDS

VGS

CMOS Inverter

VIN VOUT
IN      OUT

  0         1

  1         0

VIL VIH

VOL

VOH

IN OUT

IN = 0

PFET ON

NFET OFF

OUT = 1

IN = 1

PFET OFF

NFET ON

OUT = 0

A CMOS inverter has one PFET between power and

the output, and one NFET between the output and

ground. Think of the PFET and NFET as switches.

A PFET “switch” closes when IN=0, and ties the

output to VDD. A NFET “switch” closes when IN=1,

and ties the output to ground.



11

CMOS Logic

A CMOS Logic gate consists of a bunch of PFETs in the pullup

(between power and the output), and a bunch of NFETs in the pulldown

(between the output and ground).

The pullup may only consist of PFETs and the pulldown may

only consist of NFETs. Otherwise, the logic gate will not have

sufficient gain in the forbidden area. Also, since the NFETs always go in

the pulldown, CMOS logic gates can only implement negative logic.

Pullup PFETs

Pulldown NFETs

I

N

P OUTPUT

U

T

S

A

B

A B

The pullup and pulldown must complement each other.
A BIf two NFETs are in parallel in the pulldown, then the

corresponding PFETs must be in series in the pullup.
A

The opposite is also true – NFETs in series must have

corresponding PFETs in parallel. B

If you have a formula that you need to implement as a CMOS logic gate:

     A*B means A and B are in series in the pulldown and in parallel in the pullup

     A+B means A and B are in parallel in the pulldown and in series in the pullup

First draw the pulldown. Then after the pulldown is done, draw the pullup as the

complement of the pulldown. In the example below, we must draw the CMOS logic gate

for OUTPUT = A * B + C.

OUT = A*B + C

NFET: A and B in series

A

B

OUT = A*B + C

NFET: A*B in parallel with C

A

B
C

OUT = A*B + C

PFET: A and B in parallel

A B

OUT = A*B + C

PFET: A*B in series with C

A B

C

A

B
C

A B

C



12

If you have a CMOS logic gate and you wish to derive the formula, follow these steps:

1) Look at the pulldown only

2) A and B in series means there is an “A*B” in the equation

3) A and B in parallel means there is an “A+B” in the equation

4) Negate the entire thing after you’re done with all the pulldown NFETs.

Step 4 is necessary because you’re dealing with NFETs. You will probably want to do a

few similar practice problems to gain intuition.

A

B
C

A and B are in series

A*B

A

B
C

A*B is in parallel with C

OUTPUT = A*B + C



13

CMOS Logic Gates

INVERTER

A Z

A    Z

0     1

1     0

BUFFER

A Z

A    Z

0     0

1     1

NAND

A

B

Z

A  B    Z

0   0      1

0   1      1

1   0      1

1   1      0

AND

A

B

Z

A  B    Z

0   0      0

0   1      0

1   0      0

1   1      1

NOR

A   B    Z

0   0      1

0   1      0

1   0      0

1   1      0

A

B

Z

OR

A   B    Z

0   0      0

0   1      1

1   0      1

1   1      1

A

B

Z

XNOR

A   B    Z

0   0      1

0   1      0

1   0      0

1   1      1

XOR

A   B    Z

0   0      0

0   1      1

1   0      1

1   1      0

A

B

Z

A

B

Z

The figures above contain eight typical standard CMOS logic gates, their symbolic

representation, and their truth tables. You can combine logic gates to implement almost any

function. However, keep in mind that negative logic (inverter, nand, nor, xnor) is usually

smaller and faster than positive logic (buffer, and, or, xor).

Boolean Algebra

A * B means “A and B”

A * B means “A nand B”

A + B means “A or B”

A + B means “A nor B”

A +  B means “A xor B”

A +  B means “A xnor B”

DeMorgan’s Law

A * B =  A + B

A + B =  A * B



14

If you wish to derive a logic equation

from an existing circuit, try to derive

intermediate equations, starting at the

inputs and working incrementally

towards the output. You can use

boolean algebra to manipulate the

formula to whatever format you prefer.

A

B

A*B

C C

A A Z = A + A*B + C

Z = A * A*B * C

Z = A * A*B *  C

Z = A*B*C

A

B C

Z = A*B+C
A*B

Z = A*B + C

Z = A*B * C

Invert it twice (two bars)

DeMorganize the bottom bar

A

B

A*B

C C

Z

Buildings Circuits with Logic Gates

If you wish to implement a function Z = A*B + C using only standard logic gates such as

those pictured above, you can implement it in multiple ways. The two possibilities below (all

negative logic on the left and all positive logic on the right) are not necessarily faster or

smaller than one another – it depends on the size and speed of the standard logic gates.

Contamination Delay

The contamination delay of a circuit, tcd, is

the minimum amount of time it takes for an

invalid input to propagate to an invalid

output. The figure to the right illustrates the

measurement of a buffer’s contamination

delay.

For a circuit with multiple inputs or paths to

the output, the contamination delay of the

entire circuit is the sum of the contamination

delays in the shortest path. For example, the

circuit to the right has three paths, with the

shortest contamination delay through the

bottom path for a tcd = (2.5 + 3) = 5.5

X

X

tcd

A

Z

A Z

A

B

C

Z

tcd=1
tcd=2

tcd=2.5
tcd=3



15

Sum of Products

Sum of Products is an easy way to derive a formula from a

truth table. The formula is a sum of products. Each product

represents one row where the output Z = 1. For each

product/row, write down all the inputs and put individual

bars over the inputs that equal zero.

If there are fewer Z = 0 than Z = 1 outputs, you can find the

sum of products using the same method, but use the Z = 0

rows as the products and negate the entire sum of products.

From here, you should be able to find the minimal sum of

products by reducing the formula using boolean arithmetic.

This can be quite tedious. An easier method for finding the

minimal sum of products is presented in a subsequent

section on Karnaugh Maps.

A B C    Z

0  0  0    0

0  0  1    0

0  1  0    1

0  1  1    0

1  0  0    0

1  0  1    1

1  1  0    0

1  1  1    1

A  B  C

A  B  C

A  B  C

Z = ABC + ABC + ABC

Propagation Delay

The propagation delay, tpd, is the maximum

amount of time it takes for a valid input to

propagate to a valid output. The figure to the

right illustrates the measurement of a buffer’s

propagation delay.

For a circuit with multiple inputs or paths to

the output, the propagation delay of the entire

circuit is the sum of the propagation delays in

the longest path. For example, the circuit to

the right has three paths, with the longest

propagation delay through the middle path

for a tpd = (3 + 2 + 5) = 10

X

X

tpd

A

Z

A Z

A

B

C

Z

tpd=1
tpd=2

tpd=3
tpd=5



16

Karnaugh Maps

Karnaugh Maps are extremely useful for finding the minimal sum of products.

Translate a truth table to a Karnaugh Map.

     " Note the order of the AB field – neighbors must differ by one bit
1

A   B   C     Z

0    0    0      1

0    0    1      0

0    1    0      X

0    1    1      0

1    0    0      1

1    0    1      X

1    1    0      X

1    1    1      X

C

        00     01     11     10

0       1       X      X       1

1       0       1       X      X

A

AB

C

B

Find and circle all 1’s

- Don’t Cares ‘X’ can be circled, if needed

- Circles must have dimensions that are a power of 2 (1, 2, 4, 8, etc.)

2

- You can overlap circles

- The Karnaugh Map folds over, so circles can go off the sides

- Look for the largest groups of 1’s

- Try to get the smallest number of circles

C

        00     01     11     10

0       1       X      X       1

1       0       1       X      X

A

AB

C

B

  OUT = C + B + A3

C

        00     01     11     10

00     1       0       0       1

01     0       1       1       0

11     0       1       1       0

10     1       0       0       1

A

AB

CD

B

D

OUT = B   D + B D

Lenient Combinational Logic

Take a karnaugh map that is directly derived from the

circuit. Each gap between neighboring circles is an

opportunity for a glitch. The circuit is lenient if there

are no gaps.

        00     01     11     10

0       0       1       1       0

1       0       1       1      1

AB

C



17

Mux

A d-input mux has a selector input, d data inputs (d is a power of two), and one output.

D0

D1

0

1

OUT
If Select = 0, then OUT = D0

If Select = 1, then OUT = D1

Select

D0     D1    Select     OUT

  0       X         0            0

  1       X         0            1

 X       0          1            0

 X       1          1            1

ROM / PLA

A Read-Only Memory and a Programmable

Logic Array consist of address input lines, word

lines, and bit lines. You can add NFETs to

configure the ROM or PLA to perform many

functions. Each word line and bit line is driven

by a weak PFET whose input is tied to ground.

The weak PFET serves to drive the wire high

when there is no path to ground, but is easily

overpowered by a NFET.
A B Z

A ROM specifies all combinations of inputs. A PLA looks like a small ROM because

unnecessary FETs and wires are eliminated. If you are given the PLA pictured above, follow

these steps to figure out the formula for the output:

          1. Write the logic equivalent of each word line at the top

          2. Each bit line driving the gate of a NFET is a product in the sum of products

          3. For each NFET drain attached to the bit line, negate the gate input.

              Repeat to find product.

          4. Z = OR of all the products

A B Z = A B + A B

A A B B

A B

A B

products

Sum of products

Weak PFET



18

Latch

A latch has one enable input G, one data input D, and one data output Q.

Think of a latch as a gate. If the latch is enabled, the gate opens and the

input data propagates through to the output. If the latch is not enabled,

then the gate is closed, and the output remains the same.

One way to implement the latch is to use a two-input mux. This

introduces some timing constraints on the inputs of the latch. The data

input D must be valid TSETUP before G falls and D must stay valid for

THOLD after G falls.

D Q

G

G

D

Q

valid validX X

valid X valid

TPD TPD

THOLD

TSETUP = TPD

TSETUP = 2 TPD because …

(1) One TPD for D to propagate through to Q

(2) Hold Q’ one TPD for mux to promise a

stable output after G falls

0

1

Q’

D

G

Q

Flip Flop

A flip flop, which is interchangeably referred to as a register, has a clock

input, a data input D, and a data output Q. D propagates to Q only at the

rising 0 " 1 edge of the clock. Otherwise, the output stays the same.

D Q

clk

A flip flop is implemented with

two latches – a master and a slave.

As in the 6.004 lecture, think about

this implementation as two

tollbooth gates that open one at a

time. The master passes the data

into the middle when the clock is

low. When the clock goes high, the

master immediately closes to trap

the data, and the slave opens to let

the trapped date through to the

output.

D Q

G

D Q

G

D

CLK

Q

Master Slave

Flip Flop Implementation – Two Latches

M

S

CLK = 0

M

S

CLK = 1



19

Flip Flop Timing

tSETUP = Minimum time D holds before rising CLK edge

tHOLD = Minimum time D holds after rising CLK edge

tPD = Maximum CLK"Q propagation delay

tCD = Minimum CLK"Q contamination delay

clk

D

Q

tSETUP
tHOLD

tCD

tPD

tCD,MASTER > tHOLD,SLAVE to ensure that data will not pass through both the master and the

slave while both are transitioning. If this inequality does not hold, then you can ensure

that the flip flop works by inserting a buffer between the master and slave such that

tCD,MASTER + tCD,BUFFER > tHOLD,SLAVE

Flip Flop Circuits

D Q D QLogic

CLK

The circuit contains register 1 on the left, some random combinational logic, and register

2 on the right. There are two inequalities that must hold in order for this circuit to work.

tCD,REG1 + tCD,LOGIC > tHOLD,REG2

to ensure that data coming out of reg1 one does not corrupt the data going in to reg2.

tCLK > tPD,REG1 + tPD,LOGIC + tSETUP,REG2 where tCLK = the clock period

to ensure that reg2’s input will meet reg2’s setup time.



20

Finite State Machine

A finite state machine (FSM) contains input

signals, state signals, and output signals. The

example FSM pictured here contains one input,

two state signals s1 and s0, and one output. The

circles contain the states for s1 and s0 and tell

us whether we’re in state 00, 01, 10, or 11. The

arcs tell us the next state based on the input.

00

OUT=0

01

OUT=0

11

OUT=1

10

OUT=0

In=0

In=0

In=1

In=1

In=0

In=1

In=0

In=1

An FSM must designate a transition

for every possible input. Also, the arcs

leaving a state must not allow two

choices for the same input.

s1   s0  IN      s1’   s0’   OUT

0     0    0       0       0        0

0     0    1       0       1        0

0     1    0       0       1        0

0     1    1       1       0        0

1     0    0       1       0        0

1     0    1       1       1        0

1     1    0       0       0        1

1     1    1       1       1        1

Current Next Output Based on

state state Current State



21

Metastability

A metastable state in the digital world has the following properties:

1) Invalid

2) Unstable – a small perturbation changes it to a 0 or 1

3) It will settle in unbounded time

4) The longer you wait, the more likely it has stabilized

The two-inverter configuration has three possible states where

Vin = Vout : two stable states at valid 1 and 0, and one metastable

state in the forbidden region.

Imagine a ball at the top of a hill. If the hill is not flat, there are three

possible states – a stable state at the bottom left, a stable state at the

bottom right, and a metastable state at the top of the hill. That ball is

in a metastable state because (1) the top of the hill is an unstable state

– a small perturbation will make it roll down the hill, and (2) the ball

will eventually settle to a stable state at the bottom of the hill.

Vin
Vout

Vin=Vout

You cannot build certain devices with perfect reliability because they cause

metastability problems. Some example systems are shown below:

Sample S at a specified time after A and B have risen to find out

which rising edge came first – A or B. The Arbiter may enter a

metastable state if A and B rise at exactly the same time. The

Arbiter will eventually come to decision in unbounded time but

might be metastable and invalid when S is sampled.

Bounded-time Arbiter
CANNOT BUILD

Arbiter
A

B
S

Unbounded-time Arbiter
CAN BUILD

Arbiter
A

B

S

Done

Sample S when the Done signal is high to find out which

rising edge came first – A or B. S may enter a metastable state

if A and B rise at exactly the same time. However, we are

guaranteed that S will be valid when Done is high, therefore

this arbiter will not cause other metastable states.

If the D input does not meet the flip flop’s setup and hold

time, the Q output might be metastable.

Bounded-time Synchronizer
CANNOT BUILD

Asynchronous

Signal
D Q

Bounded-time Combinational Logic
CAN BUILD

We are guaranteed a valid output after a specified

propagation delay.



22

Unpipelined Circuits

Latency = L = time an input takes to appear at the output

Throughput = T = #outputs / time

The circuit contains multiple blocks of combinational logic,

each with a tCD = 0 and a tPD indicated by the number inside

the box. The latency L of the circuit is the longest path from

the input to the output. The entire circuit is combinational

logic, so the worst-case throughput T is 1 output / L.

1 6

3 3

2

L = 1+6+2 = 9

T = 1 output / 9 = 1/9

Pipelined Circuits

Pipelined circuits contain registers in-between the logic

blocks. For simplicity, we assume that these are ideal

registers with zero contamination and propagation delay,

and zero setup and hold time. The register’s clock cycle tCLK

is equal to the propagation delay of the slowest block.

1 6

3 3

2

L = 6*3 = 18

T = 1/6

Latency = L =  K * tPD,slowest stage           where K = # stages = # registers on each path

Throughput = T =  ____1_______

                                 tPD,slowest stage

Pipelining a circuit typically adds latency and increases throughput. In the example

above, the 6 ns clock cycle forces an input to spend 6 ns in every stage. Since there are

three stages, the input spends 18 ns before its corresponding result appears at the output

as opposed to the unpipelined circuit’s 9 ns latency. However, pipelining the circuit

ensures that a new result appears at the output every 6ns, thus increasing the throughput

to 1/6.

Use the following rules of thumb to pipeline a circuit:

1) Put two dots on opposite sides of the circuit. Draw lines from one

     dot to another

2) Always put a register on the output

3) Isolate the slowest block with registers. Make this block the slowest

     stage for maximum throughput

4) Never cross a path twice with the same line. This helps ensure that each

     path has the same number of registers

5) Add a register every time a line crosses a wire.



23

1 6

3 3

2

1) Register on the output

1 6

3 3

2

2) Isolate the slowest block

1 6

3 3

2

The example above is one of many ways to pipeline this circuit. Any configuration is

valid as long as there are an equal number of registers on each path from input to output.



24

Assembly

Assembly is human-readable notation of machine language used in many computer

architectures, including the simplified RISC (Reduced Instruction Set Computer)

architecture discussed in this book. Some of the simple assembly operations will be

discussed – arithmetic operations, load from memory, store to memory, jump, and branch.

Assembly code syntax takes many forms and this handbook discusses one possible

implementation: OP(first input register, second input register, destination register). An

operation OP will be performed on the two values are stored in the first and second input

registers. The result of the operation will be written to the destination register. Each register

is 32-bits wide and there is one register Rzero with value always zero.

Let us examine an arithmetic instruction and assume that the initial values stored in register

0, 1, and 2 are 0x23, 0x42, and 0x56 respectively. As illustrated below, after an add

instruction like ADD(R0, R1, R2), the values of register 0 and 1 will be added, and the

value will be written into register 2.

R0           0x23

R1           0x42

R2           0x7

...              ...

R0           0x23

R1           0x42

R2           0x65

...              ...

ADD(R0, R1, R2)

Register File Register File

Arithmetic Operations

Arithmetic operations are often computed in the ALU (Arithmetic Logic Unit). Operations

can be done with two input registers, like ADD(R0, R1, R2), or one input register and a 16-

bit constant embedded in the instruction, like ADD(R0, 0x42, R2). The ALU can compute

many different functions - mathematical operations like ADD (add), SUB (subtract), MUL

(multiply), DIV (divide), logical operations like AND, OR, XOR, comparison operations

like CMPEQ (equal), CMPLT (less than), CMPLE (less than or equal), or shift operations

like SHL (shift left), SHR (shift right without sign extension), and SRA (shift right with

sign extention).

Shift left SHL(R0, R1, R2) basically shifts the value in R0 left by n bits, where n is the

value of register R1. The final shifted value is written into R2.

R0           0x1

R1           0x3

R2           0x45

...              ...

R0           0x1

R1           0x3

R2           0x8

...              ...

SHL(R0, R1, R2)

Register File Register File



25

There are two types of shift right operations – one without sign extension (SHR), and one

with sign extension (SRA). The sign bit is the most significant bit (MSB), or bit 31 in this

instruction set. When shifting a value to the right, the most significant bits are either

replaced with zero’s if there is no sign extension, or is replaced with the old value of bit 31.

Load

A LOAD instruction loads a value from memory and stores it into a destination register:

LOAD(address register, constant, destination register). The address for memory is

calculated by adding the value in the address register with the constant.

R0           0xF123

R1           0x4

R2           0x7

...              ...

R0           0xF123

R1           0x4

R2           0x0F12

...              ...

SHR(R0, R1, R2)

R0           0x8123

R1           0x4

R2           0x7

...              ...

R0           0x8123

R1           0x4

R2           0xF812

...              ...

SRA(R0, R1, R2)

R0           0x7123

R1           0x4

R2           0x7

...              ...

R0           0x7123

R1           0x4

R2           0x0712

...              ...

SRA(R0, R1, R2)

Register File Register File

R0           0x1

R1           0x3

R2           0x45

...              ...

R0           0x1

R1           0x3

R2           0x8

...              ...

LD(R0, 0x4, R2)

Addr           Value

...          

0x4           0x3

0x5           0x8

...              ...

Addr           Value

...          

0x4           0x3

0x5           0x8

...              ...

Register File Register File

Data Memory Data Memory



26

Store

A STORE instruction stores a register value to memory. STORE(value register, constant,

address register). The address for memory is calculated by adding the value in the address

register with the constant.

R0           0x1

R1           0x3

R2           0x4

...              ...

R0           0x1

R1           0x3

R2           0x4

...              ...

ST (R0, 0x1, R2)

Addr           Value

...          

0x4           0x9

0x5           0x8

...              ...

Addr           Value

...          

0x4           0x9

0x5           0x1

...              ...

Data Memory Data Memory

Register File Register File

Branch

A branch instruction is an assembly version of an if-then-else construct. IF the value of the

comparison register meets a certain criteria, THEN the computer will branch to the

instruction indicated by the label, ELSE go to the next instruction in the sequence. If the

operation does indeed branch, then a pointer will be stored in the instruction address

destination register. Branch instructions include BEQ/BF (equal to zero) and BNE/BT (not

equal to zero).

BEQ(comparison register, label, instruction address destination register).

For example, the following is an assembly implementation of “if (a=0) then b=2”

start:  LD(Rzero, a, R0) // load value of a into register R0

          BEQ(a, btwo, R1) // if a=0, then branch to “btwo” and store instruction pointer in R1

...

btwo: ADDC(Rzero, 0x2, R0) // R0 = 2

          ST(R0, b, Rzero) // b = 2

...



27

RISC Processor Architecture

The simplified RISC (Reduced Instruction Set Computer) processor architecture described

in this book consists of seven main parts: (1) fetch current instruction from Instruction

Memory, (2) access the Register File and execute comparisons for branch instructions, (3)

ALU, (4) Data Memory load and store, (5) write back to the register file, (6) next

instruction address calculation, and (7) control logic. This book will explore the execution

of some common operations.

This figure is altered from an illustration taken from the MIT course 6.004 website 

http://6004.csail.mit.edu/

6

1

2

3

4

5

7



28

Arithmetic Operations

ADD (R0, R1, R2) would be executed in the RISC processor as follows.

1) A 32-bit instruction is fetched from the Instruction Memory

2) Register 0 and Register 1 are accessed in the register file, and the values of those

registers are driven to the ALU

3) The ALU performs adds the values of Registers 0 and 1

4) Since this is not a LOAD or STORE instruction, the Data Memory is not accessed

5) The output value of the ALU is written to register 2

6) Since this is not an branch instruction, the instruction address is incremented by

four.

For arithmetic operations that involve constants, like ADDC(R0, 0x1, R2), the constant

0x1 is embedded in the instruction memory output of stage 2, and the constant is

bypassed to the ALU in the ASEL mux.

6

1

2

3

4

5

7



29

Load

LD (R0, 0x4, R2) would be executed in the RISC processor as follows.

1) A 32-bit instruction is fetched from the Instruction Memory

2) Register 0 is accessed in the Register File, and the value is driven to the ALU

3) The ALU calculates the Data Memory address by adding the value of Register 0

and the constant 0x4

4) The Data Memory is accessed and the data is output to the wdsel mux

5) The contents of Data Memory are loaded into Register 2

6) Since this is not an branch instruction, the instruction address is incremented by

four.

6

1

2

3

4

5

7



30

Store

ST (R0, 0x1, R2) would be executed in the RISC processor as follows.

1) A 32-bit instruction is fetched from the Instruction Memory

2) Register 0 is accessed in the register file, and the value is driven to Write Data

(WD) port of Data Memory. Also, the value of Register 2 is driven to the ALU.

3) The ALU calculates the memory address by adding the value of Register 2 and the

constant 0x1

4) The value of Register 0 is stored into Data Memory.

5) Nothing is written to the register file

6) Since this is not an branch instruction, the instruction address is incremented by

four.

6

1

2

3

4

5

7



31

Branch

BEQ (R0, btwo, R1) would be executed in the RISC processor as follows.

1) A 32-bit instruction is fetched from the Instruction Memory

2) Register 0 is accessed in the register file, and a comparison is done to determine if

the value of Register 0 is equal to zero (Z = 1) or nonzero (Z = 0)

3) If Z = 1, the ALU bypasses the instruction address to its output.

4) Branch instructions do not access data memory.

5) If Z = 1, then the ALU bypass is stored into Register 1.

6) If Z = 1, the address “btwo” will be loaded ino the PC register, otherwise the

instruction address is incremented by four

6

1

2

3

4

5

7



32

Intro to Stacks

A stack is is basically a stack of data located in memory. The bottom of the stack is

located at a set address. The top of the stack is designated by the stack pointer (SP,

Register 29), a register that contains the address of the next unused memory location.

data

data

data

unused

unused

Bottom of stack

Top of stack

SP

Non-

stack

data

MEMORY

Non-

stack

data

Area of

Memory

Reserved

For Stack

REGISTER FILE

Note: The Beta is a 32-bit processor.

          One byte = 8 bits

          Each location in memory takes up 32 bits = 4 bytes.

          Memory is byte-addressable.

          Therefore, addresses increment by 4 as you go up the stack

Random data

Random data

0x10C

Random data

0

R0

R1

R29

R30
R31

0x100

0x104

0x108

0x10C

0x110

0x0

SP = Register 29

Stack Macros

There are four stack macros you should be familiar with:

PUSH(Rx) (1) Push contents of register Rx on top of the stack

(2) SP ! SP + 4

POP(Rx) (1) Pop contents of register Rx on top of the stack

(2) SP ! SP + 4

ALLOCATE(k) (1) Reserve k lines: SP ! SP + 4*k

DEALLOCATE(k) (1) Release k lines: SP ! SP – 4*k

Note that PUSH and POP are each two instruction macros – one to push/pop between the

register and the stack, and one to update the Stack Pointer (SP).



33

0x1

0x2

0x3

unused

unused

SP

STACK
(in memory)

REGISTER FILE

0x6

0xF

0x10C

Random data

0

R0

R1

R29

R30
R31

0x100

0x104

0x108

0x10C

0x110

PUSH(R0)

0x1

0x2

0x3

unused SP

STACK
(in memory)

REGISTER FILE

0x6

0xF

0x110
Random data

0

R0

R1

R29

R30
R31

0x100

0x104

0x108

0x10C

0x110

0x6

0x1

0x2

0x3

unused

unused

SP

STACK
(in memory)

REGISTER FILE

0x6

0xF

0x10C

Random data

0

R0

R1

R29

R30
R31

0x100

0x104

0x108

0x10C

0x110

0x1

0x2

unused

SP

STACK
(in memory)

REGISTER FILE

0x3
0xF

0x108
Random data

0

R0

R1

R29

R30
R31

0x100

0x104

0x108

0x10C

0x110

unused

unused

POP(R0)

1) Contents of Register 0 (0x6) are pushed onto the top of the stack

2) SP updated - 0x110 is the address of the top of the stack

1) Data at top of stack (0x3) is popped into Register 0

2) SP updated - 0x108 is the address of the top of the stack



34

0x1

0x2

0x3

unused

unused

SP

STACK
(in memory)

REGISTER FILE

0x6

0xF

0x10C

Random data

0

R0

R1

R29

R30
R31

0x100

0x104

0x108

0x10C

0x110

ALLOCATE(2)

0x1

0x2

0x3

unused SP

STACK
(in memory)

REGISTER FILE

0x6

0xF

0x114
Random data

0

R0

R1

R29

R30
R31

0x100

0x104

0x108

0x10C

0x110

0x114

?

1) SP updated - 0x110 is the address of the top of the stack

?

0x1

0x2

0x3

unused

unused

SP

STACK
(in memory)

REGISTER FILE

0x6

0xF

0x10C

Random data

0

R0

R1

R29

R30
R31

0x100

0x104

0x108

0x10C

0x110

DEALLOCATE(2)

0x1

STACK
(in memory)

REGISTER FILE

0x6

0xF

0x104
Random data

0

R0

R1

R29

R30
R31

0x100

0x104

0x108

0x10C

0x110

0x114

1) SP updated - 0x104 is the address of the top of the stack

unused

unused

SPunused

unused



35

Stack Frames

Stack frames allow procedures to call other

procedures (caller calls the callee), and prevent

procedures from corrupting each other’s data.

Two new registers are added to support Stack

Frames. Register 27, Base Pointer BP, points to

local variable 0 in the frame and is used to access

the procedure’s arguments and local variables.

Register 28, Link Pointer LP, contains the return

address of the caller. As stated in previous

sections, Register 29 is the Stack Pointer SP.

A stack frame consists of (1) arguments pushed

in reverse order, (2) the caller’s link pointer, (3)

the caller’s base pointer, and (4) a bunch of local

variables.

arg n

…

arg 0

old LP

old BP

local var. 0

…

local var. n

unused

A portion of the STACK
(in memory)

arg n

…

arg 0

old old LP

old old BP

local var. 0

…

local var. n

…

…

Callee’s

Frame

Caller’s

Frame

SP

BP

old BP

Two-level stack example

In this example, we have a caller main and a callee f. The initial state of the stack is

pictured below. Main has been running for awhile and is about to call f. The program code

arrow points to the line that is about to be executed. To conserve space, only relevant

portions of the program code are shown in each snapshot.

unused

Main’s args

Main’s LP

Main’s caller’s BP

local var. 0

local var. 1

…

…

SP

BP

Stack
(in memory)

Register File

?

?

0x114

?

0

R0

R1

BP

LP

SP

R30

R31

0x100

0x104

0x108

0x10C

0x110

0x114

….

0x004

0x10C

Main:     ….

              ….

              PUSH(b)

              PUSH(a)

              BR(f, LP)

              ….

f: ….

0xC00

0xC04

0xC08

0xC0C

Program code
(in memory)

(1) Initial State: Main is about to call helper procedure f

The code shown in Main is a typical calling sequence.



36

unused

Main’s args

Main’s LP

Main’s caller’s BP

local var. 0

local var. 1

…

…

SP

BP

Stack
(in memory)

Register File

?

?

0x11C
?

0

R0

R1

BP

LP

SP

R30

R31

0x100

0x104

0x108

0x10C

0x110

0x114

0x118

0x11C

…

0x004

0x10C

Main:     ….

              ….

              PUSH(b)

              PUSH(a)

              BR(f, LP)

              ….

f: ….

0xC00

0xC04

0xC08

0xC0C

Program code
(in memory)

(2) Main pushed f’s arguments onto the stack in reverse order

b

a

unused

Main’s args

Main’s LP

Main’s caller’s BP

local var. 0

local var. 1

…

…

SP

BP

Stack
(in memory)

Register File

?

?

0x11C

?

0

R0

R1

BP

LP

SP

R30

R31

0x100

0x104

0x108

0x10C

0x110

0x114

0x118

0x11C

…

0xC0C
0x10C

Main:     ….

              ….

              PUSH(b)

              PUSH(a)

              BR(f, LP)

              ….

f: ….

0xC00

0xC04

0xC08

0xC0C

Program code
(in memory)

(3) Main branched to f and stores return address in LP

b

a

unused

Main’s args

Main’s LP

Main’s caller’s BP

local var. 0

local var. 1

…

…
SP

BP

Stack
(in memory)

Register File

?

?

0x124
?

0

R0

R1

BP

LP

SP

R30

R31

0x100

0x104

0x108

0x10C

0x110

0x114

0x118

0x11C

0x120

0x124

…

0xC0C

0x10C

Main:     ….

f:         ….

           PUSH(LP)

           PUSH(BP)

           MOVE(SP,BP)

           ALLOCATE(2)

Program code
(in memory)

(4) f pushed the return address (LP) and Main’s BP

     The code shown in f is a typical entry sequence.

b

a

0xC00

0xC04

0xC08

0xC0C

0xC0C
0x10C



37

unused

Main’s args

Main’s LP

Main’s caller’s BP

local var. 0

local var. 1

…

…
SP

BP

Stack
(in memory)

Register File

?

?

0x124

?

0

R0

R1

BP

LP

SP

R30

R31

0x100

0x104

0x108

0x10C

0x110

0x114

0x118

0x11C

0x120

0x124

…

0xC0C

0x124

Main:     ….

f:         ….

           PUSH(LP)

           PUSH(BP)

           MOVE(SP,BP)

           ALLOCATE(2)

Program code
(in memory)

(5)  f updated BP to reflect the current stack frame

b

a

0xC00

0xC04

0xC08

0xC0C

0xC0C

0x10C

Main’s args

Main’s LP

Main’s caller’s BP

local var. 0

local var. 1

…

… SP

BP

Stack
(in memory)

Register File

?

?

0x12C
?

0

R0

R1

BP

LP

SP

R30

R31

0x100

0x104

0x108

0x10C

0x110

0x114

0x118

0x11C

0x120

0x124

0x128

0x12C

0xC0C

0x124

Main:     ….

f:         ….

           PUSH(LP)

           PUSH(BP)

           MOVE(SP,BP)

           ALLOCATE(2)

           …

Program code
(in memory)

(6) f allocated space for two local variables

b

a

0xC00

0xC04

0xC08

0xC0C

0xC10
0xC0C

0x10C

reserved

reserved



38

Main’s args

Main’s LP

Main’s caller’s BP

local var. 0

local var. 1

…

… SP

BP

Stack
(in memory)

Register File

Z
?

0x12C

?

0

R0

R1

BP

LP

SP

R30

R31

0x100

0x104

0x108

0x10C

0x110

0x114

0x118

0x11C

0x120

0x124

0x128

0x12C

?

0x124

Main:     ….

f:         ….

           MOVE(val, R0)

           MOVE(BP, SP)

           POP(BP)

           POP(LP)

           JMP(LP)

Program code
(in memory)

(7) f did some computing and put the return value Z in R0

b

a

0xC30

0xC34

0xC38

0xC3C

0xC40
0xC0C

0x10C

Local var 0

f loaded argument a into a register using:  LD(BP, -12, Reg)

f loaded argument b into a register using:  LD(BP, -16, Reg)

f loaded local variable 0 into a register using: LD(BP, 0, Reg)

f loaded local variable 1 into a register using: LD(BP, 4, Reg)

Local var 1

Main’s args

Main’s LP

Main’s caller’s BP

local var. 0

local var. 1

…

… SP

BP

Stack
(in memory)

Register File

Z
?

0x12C

?

0

R0

R1

BP

LP

SP

R30

R31

0x100

0x104

0x108

0x10C

0x110

0x114

0x118

0x11C

0xC0C

0x10C

f:         ….

           MOVE(val, R0)

           MOVE(BP, SP)

           POP(BP)

           POP(LP)

           JMP(LP)

Program code
(in memory)

(8) f executed a return sequence shown above:

     0xC30  - Stored return value into memory

     0xC34  - Deallocated local variables by moving SP to BP

     0xC38  - Restored the BP

     0xC3C - Restored the LP

     0xC40  - Jumps to return address stored in LP

b

a

0xC30

0xC34

0xC38

0xC3C

0xC40

Main:     ….

              BR(f, LP)

              ….

0xC08

0xC0C



39

Memory Hierarchy

Memory is one of the bottlenecks of a pipelined processor. We can alleviate this

bottleneck with a hierarchy – a small fast cache (often notated as “$”), a larger slower

main memory, and an enormous but very slow disk. Main memory has everything the

cache has and more. Similarly, disk has everything contained in main memory and more.

When the CPU accesses a memory location A, it goes through these steps:

(1) Check Cache – If A is in the cache (cache hit), then return DATAA, else go to step 2

(2) Check Main Memory – If A is in memory, then return DATAA and put it in the cache,

else go to step 3.

(3) A will always be in disk. Put A in main memory and the cache, and return the value.

For simplicity, we will assume (for now) that we never have to go to disk – if there is a

cache miss on A, we will always find A in main memory.

Caches are small, fast memory that contain temporary copies of selected memory

locations. For 6.004, you can assume that the CPU runs at a clock speed where a cache hit

on a memory access will return the cache data in one cycle, and a cache miss will cause

the CPU to stall until the data is ready from memory. If the miss rate isn’t too high, using

a cache typically improve the average memory access time.

CPU
(Beta) DISK

Main
Memory

$

Locality

Caches are useful because they exploit locality in memory accesses. If you access memory

location A, you’re more likely to access A again in the near future. Every time there is a

cache miss, that memory location will go in the cache and replace something that hasn’t

been used for awhile.

tave = tcache + (miss rate) * tmemory

tcache = time it takes to access the cache

tmemory = time it takes to access main memory



40

Fully Associative Cache

A cache contains many cache lines. A cache line contains (1) a valid bit indicating if the

data in that line is valid, (2) optional status bits that indicate if the data is dirty, read-only,

etc., (3) a tag formed from the memory address, and (4) the data corresponding to that

address.

A fully-associative cache is one of the three cache architectures described in this

handbook. It differs from other cache architectures in that it can put data anywhere.

When a memory address is presented to a fully associative cache, the address tag is

compared to tags from all the valid lines in the cache. If there is a match, it’s a cache hit

and the data from that line is sent to the CPU. Otherwise it’s a cache miss.

If there is a cache miss when the cache is full (all the lines are valid), we figure out which

line to replace using one of the replacement policies outlined in a later section. If the line

that is replaced contains valid and dirty data (V=1 and D=1), then we also have to write

the data back to main memory. If it’s not dirty, we just throw the line out.

Some useful equations regarding fully associative caches:

Capacity = # lines * (1 valid bit + S status bits + T tag bits + D data

bits)

Typical values for the 6.004 BETA: T = 30 bits, D = 32 bits

S Tag Data

=?

S Tag Data

=?

S Tag Data

=?

…

TAG 00

Memory Address

from CPU

HIT?

Data from Cache

V

V

V



41

The following example illustrates three memory accesses, starting with an empty

fully associative cache. Each picture illustrates the state of the cache after the

things in the commentary have executed.

0 X X

=?

0 X X

=?

0 X X

=?

…
LD(A)

LD(B)

LD(B)

Initial State – Empty Cache

0

0

0

1 A ADATA

=?

0 X X

=?

0 X X

=?

…

LD(A)
LD(B)

LD(B)

1) CPU tries to Load Address A from memory
2) Cache miss – stall the CPU while A is fetched from main memory
3) Put A and ADATA in the cache and return ADATA to the CPU
4) Cache state at this point in time shown above

Hit = 0

X

0

0

0



42

1 A ADATA

=?

1 B BDATA

=?

0 X X

=?

…
LD(A)

LD(B)
LD(B)

1) CPU tries to Load Address B from memory
2) Cache miss – stall the CPU while we get B from main memory
3) Put B and BDATA in the cache and return BDATA to the CPU

Hit = 0

= X

0

0

0

0 A ADATA

=?

0 B BDATA

=?

0 X X

=?

…

LD(A)

LD(B)

LD(B)

1) CPU tries to Load Address B from memory
2) Cache hit – return BDATA to the CPU

Hit = 1

BDATA

0

1

1



43

Direct-Mapped Cache

The direct-mapped cache is cheaper than the fully-associative cache because it only has

one tag comparator for the entire cache, as opposed to one tag comparator for every line in

a fully-associative cache. However, address collisions are possible in a direct-mapped

cache, which might adversely affect performance.

When a memory address is presented, the index bits will select the cache line. If the tag

from that cache line is equal to the tag from the memory address, it’s a cache hit. The data

from that cache line will be sent to the CPU.

If there is a cache miss and we have to go to memory, the data from memory replaces the

cache line indicated by the address index. If the line being replaced is valid and dirty data,

the cache must write that data to memory rather than throw it out.

Which cache should you use? It depends on the memory access pattern. Different patterns

and replacement strategies are more optimal for different caches.

Here are some useful equations regarding direct-mapped caches:

Capacity = # lines * (1 valid bit + S status bit + T tag bits + D data bits)

# lines = 2(# index bits)

TAG 00

Memory Address

from CPU

index

=?

Data from cache

Hit?

V Tag DataS

V Tag DataS

V Tag DataS

V Tag DataS



44

=?

Data from cache

Hit?

0 X X0

Initial State – Empty direct-mapped cache

00

01

10

11

0 X X0

0 X X0

0 X X0

The following example illustrates four memory accesses, starting with an empty

direct mapped cache. Each picture illustrates the state of the cache after the

commentary is executed.

001 0001

=?

1 001 DATA00101000

0 X X0

0 X X0

0 X X0

1) LD(0010100) " tagaddress = 001, index = 01
2) Cache line 01 is not valid, therefore this is a cache miss
3) Stall the CPU to find data in main memory
4) Store DATA0010100 in cache line 01

00

01

10

11

001 0010

=?

1 001 DATA 00101000

0 X X0

1 001 DATA 00110000

0 X X0

1) LD(0011000) " tagaddress = 001, index = 10
2) Cache line 10 is not valid, therefore this is a cache miss
3) Stall the CPU to find data in main memory
4) Store DATA0011000 in cache line 00

00

01

10

11



45

010 0010

=?

1 001 DATA 00101000

0 X X0

1 010 DATA 01010000

0 X X0

1) LD(0101000) " tagaddress = 010, index = 10
2) Cache line 10 is valid
3) Address tag and cache line tag do not match " miss!
4) Stall the CPU to find data in memory
5) Dirty bit is zero, no need to write DATA0011000 to memory
6) Store DATA0101000 in cache line 10

00

01

10

11



46

N-way Set-Associative Cache

A N-way set associative cache is made up of N ways (N direct-mapped caches). Data can

be stored in any one of those ways.

The set-associative cache is a tradeoff between a fully-associative and a direct-mapped

cache. A set-associative cache does not have a lot of expensive tags like a fully-

associative cache. A set-associative cache also cuts down on address collisions by

allowing data to be stored in N cache lines rather than one cache line provided by a direct-

mapped cache.

When a memory address is presented to the set-associative cache, the index bits select a

cache line in all the ways. If the address tag matches any of the tags in the selected cache

lines, it’s a cache hit. The data from that cache line will be sent to the CPU.

If there is a cache miss and we have to go to memory, the data from memory replaces a

cache line in one of the direct-mapped caches. If all the selected cache lines are valid, the

cache uses a replacement policy to determine which should be replaced. Also, if the line

being replaced has valid and dirty data, the cache must write that data to memory.

A set-associative cache has its advantages. However, that does not mean that the set-

associative cache will always perform better than fully-associative or direct-mapped

caches of the same capacity. As stated before, different patterns and replacement

strategies are more optimal for different caches.

Here are some useful equations regarding set-associative caches:

Capacity = (# ways) * (# lines/way) * (1 valid bit + S status bits + T tag bits + D data bits)

# lines = 2(# index bits)

TAG 00

Memory Address

from CPU

index

=?

Data from cache

Hit?

V Tag DataS

V Tag DataS

V Tag DataS

V Tag DataS

…

=?

V Tag DataS

V Tag DataS

V Tag DataS

V Tag DataS

TAGADDR TAGADDR



47

=?

Data from cache

Hit?

0 X X0

0 X X0

0 X X0

0 X X0

=?

Initial State – Empty 2-way Set Associative Cache

0 X X0

0 X X0

0 X X0

0 X X0

The following example illustrates three memory accesses, starting with an empty

2-way set-associative cache. Each picture illustrates the state of the cache after the

things in the commentary have executed.

001 0001

=?

0 X X0

1 001 D00101000

0 X X0

0 X X0

=?

0 X X0

0 X X0

0 X X0

0 X X0

1) LD(0010100) " tagaddress = 001, index = 01
2) Cache line 01 is invalid in both ways. Cache miss
3) Stall the CPU to find data in main memory
4) Store D0010100 in cache line 01 in a way



48

010 0001

=?

0 X X0

1 001 D00101000

0 X X0

0 X X0

=?

0 X X0

1 010 D01001000

0 X X0

0 X X0

1) LD(0100100) " tagaddress = 010, index = 01
2) Cache line 01 is invalid in both ways. Cache miss
3) Stall the CPU to find data in main memory
4) Store D0010100 in cache line 01 in the other way

001 0001

=?

0 X X0

0 X X0

0 X X0

=?

0 X X0

1 010 D01001000

0 X X0

0 X X0

1) LD(0010100) " tagaddress = 001, index = 01
2) Cache Hit in first way
3) Return D0010100 to CPU

1 001 D00101000

1

D0010100



49

Locality and Data Block Size

If you access memory location A then you’re more likely to access locations near A in the

future. This applies to both data and instruction memory accesses.

Example involving instruction accesses:

CPU instructions are usually executed sequentially through memory (with the exceptions of

jumps and branches). If you fetch an instruction from memory location A, you will likely

need to fetch instructions from A+4, A+8, A+12, etc. in the near future.

Caches can take advantage of locality by increasing the data block size. Whenever there is

a cache miss on memory location A, the cache will put a block of memory surrounding and

including A into the cache.

There are some tradeoffs when it comes to block sizes (assuming a fixed cache capacity).

Advantages of a larger block size

Miss rate decreases if the program

exhibits locality

Disadvantages of a larger block size

More address collisions " miss rate increases

Miss penalty increases (more data is moved

from memory to the cache)

Unnecessary words fetched

Capacity = # lines * (1 valid bit + S status bits + T tag bits + (D data bits/word) * (2b words/line)

S Tag D0

=?
…

TAG 00

Memory Address

from CPU

HIT?

Data from Cache

VBlock size D1 … D2b-1

S Tag D0

=?

V D1 … D2b-1

b (to muxes)

b

b

Fully Associative Cache with a data block



50

Capacity = # lines * (1 valid bit + S status bits + T tag bits + (D data bits/word) (2b words/line)

# lines = 2(# index bits)

TAG 00

Memory Address

from CPU

index

=?

Data from cache

Hit?

Block offset

b (to mux)

S Tag D0V D1 … D2b-1

S Tag D0V D1 … D2b-1

S Tag D0V D1 … D2b-1

S Tag D0V D1 … D2b-1

Direct Mapped Cache with a data block

Capacity = (# ways) * (# lines/way) * (1 valid bit + S status bits + T tag bits + (D data bits/word) * (2b words/line))

# lines/way = 2(# index bits)

TAG 00

Memory Address

from CPU

index

=?

Block offset

b (to mux)

S Tag D0V D1 … D2b-1

S Tag D0V D1 … D2b-1

S Tag D0V D1 … D2b-1

S Tag D0V D1 … D2b-1

…
S Tag D0V D1 … D2b-1

S Tag D0V D1 … D2b-1

S Tag D0V D1 … D2b-1

S Tag D0V D1 … D2b-1

=?

tagaddr

tagaddr tagaddr

Hit?

Data from cache

Set Associative Cache with a data block



51

Replacement Policies

Fully-associative and set-associative caches need a replacement policy to decide which

cache line to replace when all options are valid. Three common replacement strategies

include LRU (Least recently used), FIFO (first-in, first-out), and Random.

LRU replaces the least recently used location in the cache. LRU makes sense from a

locality point of view – if certain lines have been used more recently, they are more likely

to be used in the future. LRU is rather costly, however, and is susceptible to memory

patterns that cause worst-case cache performance.

FIFO replaces the oldest item in the cache. FIFO is much cheaper and easier to implement

than LRU, but is also susceptible to worst-case scenario memory patterns that cause worst-

case cache performance.

Random will randomly select a line to be replaced. Random generators that produce a

uniform distribution are difficult to build, possibly less susceptible to worst-case scenarios.

Write Policies

When a cache line is replaced or being written, that line needs to be written to memory at

some point. Three common write policies include write through, write behind, and write

back.

Write through – every time the CPU writes to memory, write to both the cache and main

memory. There are no dirty bits in write through. An advantage to write through is that the

contents of main memory will never be stale. A disadvantage is a sacrifice in performance

from stalling the CPU on every write to memory. For example, a lot of programs contain

functions that repeatedly write to the same variable and then return the final result. All we

need is for the final result to be stored in main memory. Storing the intermediate results in

main memory might be unnecessary.

Write behind – every time the CPU writes to memory, write to the cache and the write

buffer. The CPU then proceeds to the next instruction while the write buffer writes to main

memory in the background. There are no dirty bits in write behind. This usually results in

better performance than write-through, but it is still possible for the write buffer to

unnecessarily write things to memory.

Write-back – every time the CPU writes to memory, the cache will set the dirty bit to one.

On a cache miss, if the cache line being replaced has a dirty bit of one, then that line will be

written to memory. Write back performs well because the cache writes to memory only

when it is absolutely necessary. However, write back sacrifices some area from storing a

dirty bit in each cache line.



52

Virtual Memory

Programs that are run on the CPU commonly use virtual addresses rather than physical

addresses when accessing memory. The CPU’s virtual address is translated by the MMU

(memory management unit) into a physical address that accesses the memory hierarchy.

Physical memory and virtual memory are both divided into sections called pages.

Physical pages have physical page numbers (PPN) and virtual pages have virtual page

numbers (VPN).

The virtual address that is inputted to the MMU contains a virtual page number and a

page offset. The MMU translates the virtual page number into the appropriate physical

page number via a lookup table. The MMU does not touch the page offset.

The output of the MMU is a physical address made up of a physical page number and an

offset. The physical page number points to a page in memory, while the offset indicates

which word to access on that page.

CPU MMU

Memory Hierarchy

$ Main Memory Disk

Virtual

Address

Physical

Address

Using virtual memory has numerous advantages over directly addressing physical

memory. Some (not all) of these advantages are discussed below.

Virtual memory separates hardware from software, thus allowing software to be written

without being constrained by the size of physical memory. This allows programs to use

a huge a virtual memory space that’s larger than physical memory and split up the jobs

between multiple computers. It also allows machines to have more physical memory

than they have in virtual memory.

Virtual memory allows different programs to be isolated from one another, and allows

the operating system to isolate itself from other software. It also allows programs and

their data to be rearranged in physical memory by the operating system in a way that’s

transparent to the program.



53

Linear Page Table (one-level page map)

A page table is basically a list of PPNs somewhere in memory. The virtual address’s VPN

selects which PTE (page table entry) to use. The PPN in that PTE is concatenated with the

offset to form a physical address.

A PTE contains optional status bits (dirty, resident, read-only, supervisor, etc.), and a PPN

(physical page number).

A dirty bit says the page has been changed since it was loaded from disk, and therefore

needs to be written to disk when it is replaced. The resident bit is set to one for pages that

are in main memory, and zero (page fault) it the page is unallocated or on disk.

(v+p) bits in virtual address

(m+p) bits in physical address

2v # of VIRTUAL pages

2m # of PHYSICAL pages

2p bytes in a physical page

2p bytes in a virtual page

2v+p bytes in virtual memory

2m+p bytes in physical memory

(m+s)2v bits in a page map

VPN offset

 S  S   PPN

PPN offset

v
p

m

Virtual Address

Physical Address

Hierarchical Page Map

In a linear page table (one-level page table), we often have a situation where a lot of

memory is unused, resulting in a lot of wasted space. One possible way to alleviate the

waste of space is to use a hierarchical page map instead of a linear page table. The diagram

below illustrates a two-level page map containing one Level 1 page table, and 2L1index

possible Level 2 page tables.

Multiple unused PTEs in a one-level page map can be equivalent to one unused Level 1

PTEs in a hierarchical page map. This significant savings in memory, however, comes at a

cost in performance since page maps are usually stored in physical memory. A linear page

table walk takes one memory access while a two-level walk takes two memory accesses.



54

 D  R   L2 map

Virtual Address

L1 index offsetL2 index

Level 1

PTBL L1 index

 D  R   PPN

Level 2

L2 map L2 index

Physical Address

PPN offset

(1) PTBL is concatenated with the L1 index to access the Level 1 page map.

               R = 0 " Page fault

               R = 1 " Page map entry contains a pointer to the Level 2 page map. Go to step

2.

(2) L2map is concatenated with the L2 index to access the level 2 page map.

               R = 0 " Page fault

               R = 1 " Page map entry contains the PPN. Go to step 3.

(3) Physical address is made of the PPN and the offset from the virtual address.

Translation Look-aside Buffer (TLB)

The TLB is a small, usually fully-associative cache that contains page map entries that

translate VPNs to PPNs. A TLB miss can severely hinder performance because the

page table walk can result in multiple accesses to memory or a page fault.

Caches – Virtual or Physical addresses

Caches that work with physical addresses might not be as advantageous if the we access

main memory during the page table walk. Caches that work with virtual addresses

might perform better, but this brings up issues that are beyond the scope of 6.004. Take

6.823 if you want to learn about these issues.



55

Virtual Address

1

TLB

$VPN PPN

PPN
VPN

2

Page Table Walk

3

Page Fault

Software

MMU Overview

The MMU goes through the following steps when it is presented with a virtual address:

1) Check the TLB (Translation Look-aside Buffer). If there is a hit, send the physical

address to memory. If not, go to step 2.

2) Page Table Walk – If the page tables and final physical page reside in memory (not

in disk), then update the TLB and send the physical address to memory. However, if

one of the page tables or the final physical page is not resident in memory, go to step 3.

3) Page Fault – a page table or final physical page resides in disk. Handled in software.



56

References

MIT 6.004 Lecture Notes from Fall 2000 and Spring 2003

MIT 6.823 Lecture Notes from Spring 2003


