
MIT OpenCourseWare
http://ocw.mit.edu 

6.004 Computation Structures 
Spring 2009 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms


M A S S A C H U S E T T S I N S T I T U T E O F T E C H N O L O G Y

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE


6.004 Computation Structures 
Lab #4 

Preparation: the description of Turing Machines in Lecure #10 “Models of Computation” will be 
useful when working on this lab. 

Turing Machine Simulation: TMSim 

The goal of this lab is write the FSM controller for a Turing Machine (TM) which checks to see if 
the string of left and right parentheses it finds on its input tape “balance”. 

The TM has a doubly-infinite tape with discrete symbol positions (cells) each of which contains 
one of a finite set of symbols. The control FSM has one input: the symbol found in the current 
cell . The FSM produces several outputs: the symbol to be written into the current cell and a 
motion control that determines how the head should move. In our simulation, the tape is 
displayed horizontally, so the tape can move left, right, or stay where it is. 

The operation of the TM is specified by a file containing one or more of the following statements: 

// comment

C++-style comment: ignore characters starting with the ‘//’ and continuing to the end of 
the current line. 

/* …. */

C-style comment: ignore characters between “/*” and “*/”. Note that the ignored 
characters may include newlines; this type of comment can be used to comment-out 
multiple lines of your file. 

symbols symbol…

Declare one or more tape symbols. The symbol “–“ (dash) is predefined and is used to 
indicate that a tape cell is blank. You have to declare symbols you use in an action 
statement (see below). A symbol can be any sequence of non-whitespace characters not 
including “/” or the quote character. If you want to declare a symbol containing 
whitespace, “/” or quote, you must enclose the symbol in quotes. You can have more 
than one symbols statement in your file. 

states state…

Declare one or more states. There are two predefined states: “*halt*” and “*error*”. The 
TM simulation will stop if either of these states is reached. The “*error*” state is useful 
for indicating that the TM has halted due to an unexpected condition. You can have more 
than one states statement in your file. The first state specified by the first states 
statement is the starting state for the TM. 

action state symbol newstate writesymbol motion

Specify the action performed by the TM when the current state is state and the current 
symbol is symbol. First the TM will write writesymbol into the current cell of the tape. 
Then the tape is moved left if “l” is specified for the motion, right if “r” is specified and 

6.004 Computation Structures - 1 - Lab #4 



remain where it is if “–“ is specified. Finally the current state of the control FSM is 
changed to newstate and the TM searches for the next applicable action. If newstate is 
“*halt*” or “*error*”, the TM simulation stops. If there is no action specified for the 
current state and current symbol, the TM enters the “*error*” state. Note that you have to 
declare any symbols or states you use in an action statement – this requirement is helpful 
in catching typos. 

tape name symbol… 
Specifies the initial configuration of a TM tape, each tape has a name. The various 
names are displayed as a set of radio buttons at the top of the TM animation – you can 
select which tape is loaded at reset by clicking on one of the buttons. You can specify 
which cell of the tape is to be current cell after reset by enclosing the appropriate symbol 
in square brackets. For example, an initial tape configuration called “test” consisting of 
three non-blank cells with the head positioned over the middle cell is specified by 

tape test 1 [2] 3


If no initial head position is specified, the head is positioned over the leftmost symbol on 
the tape. 

result name symbol…

Specifies the expected head position and contents of the tape after the TM has finished 
processing the initial tape configuration called name. This statement is used by the 
checkoff system to verify that your TM has correctly processed each of the test tapes. 
Whenever the TM enters the “*halt*” state, the final tape configuration is checked 
against the appropriate result statement if one has been specified and any discrepancies 
will be reported in the status display at the bottom of the TMSim window. 

result1 name symbol 
Like result except that only the current symbol is checked against the specified value. 

checkoff server assignment checksum

This information is used by TMSim to contact the on-line checkoff server when you 
invoke the checkoff tool (click the green checkmark in the toolbar). In order to complete 
the checkoff, you need to have run your TM on all the supplied test tapes and have each 
of the final configurations match the specified results. 

Here’s an example file that defines a control FSM with three states (s1, s2 and s3) and two 
possible tape symbols: “1” and “–“ (recall that the “–“ symbol is predefined). There is a single 
tape configuration defined called “test” which consists of a blank tape. The final tape 
configuration is expected to be a tape containing six consecutive “1” symbols with the head 
positioned over the second “1”. Note that there is an action declared for each possible 
combination of the three states and two tape symbols. 

// 3-state busy beaver Turing Machine example


// See how many 1's we can write on a blank tape using

// only a three-state Turing Machine


states s1 s2 s3 // list of state names, first is starting state


6.004 Computation Structures - 2 - Lab #4 



      symbols 1 // list of symbols (- is blank cell)


tape test - // initial tape contents, blank in this case

result test 1 [1] 1 1 1 1 // expected result


// specify transistions: action state symbol state' write move

// state = the current state of the FSM

// symbol = the symbol read from the current cell

// state' = state on the next cycle

// write = symbol to be written into the current cell

// move = tape movement ("l"=left, "r"=right, "-"=stay put)

action s1 - s2  1 r

action s1 1 s3  1 l

action s2 - s1  1 l

action s2 1 s2  1 r

action s3 - s2  1 l

action s3 1 *halt* 1 r


To run TMSim, login to your Athena account, add the 6.004 locker and type 

athena% tmsim [filename]


You can supply an optional filename argument which will be loaded into the FSM editing buffer 
(you can load and save FSM files from within TMSim too). If no argument is supplied, the 
buffer is initialized with a sample FSM. After TMSim starts, you’ll see a window with the FSM 
displayed at the bottom and a state/tape animation at the top. 

The TM display consists of the following parts: 

6.004 Computation Structures - 3 - Lab #4 



 

 

 

Tape select radio buttons. Select which of the named test tapes to use when initializing the

TM after reset.


Tape display: Shows the current state and symbol.


Speed control. This slider controls the speed of the animation when you press the “Run”

button. At the fastest speed, no status updates are performed which leads to a much faster

simulation.


“Reset” button. Reset the TM to its initial state and selected tape configuration.


“Step” button. Let the TM progress one state of the FSM.


“Run” button. Like “Step” except the TM will continue running the FSM until it reaches

the “*halt*” or “*error*” state, the “Stop” button is pressed, or an error is detected.


“Stop” button. Stop the TM. You can proceed by pressing the “Step” or “Run” button.


“All tests” button. Automates the task of selecting each test tape in turn and clicking the

“Run” button. The automated process will stop if an error is detected. 

At the bottom of the screen is a state display showing the current cycle count and any 
discrepancies detected in the final tape configuration when the TM enters the “*halt*” state. 

Well-formed parenthesis string checker 

Your task is to write the control FSM for a TM that determines if the parenthesis string on its 
input tape is balanced. Your TM should halt with a current symbol of “1” if the parens balance, 
or a current symbol of “0” if the parens don’t balance. The head should be positioned over the 
“0” or “1” on the tape. Note that there are no constraints on what the rest of the tape contains. 

Here are the test tapes and the expected results. These statements can be found in 
/mit/6.004/lab4header and should be copied into the front of your TM file. You’ll need to add 
statements declaring your states and actions (and possibly more symbols) in order to complete the 
TM definition. 

// Parenthesis matcher Turing Machine

// test tapes and checkoff information


checkoff "6004.csail.mit.edu/currentsemester/6004assignment.doit"

 "Lab #4" 1103641864  // this should be at the end of the line above


symbols ( ) 0 1


tape test1 (

result1 test1 0


tape test2 )

result1 test2 0


tape test3 ( )


6.004 Computation Structures - 4 - Lab #4 



 

 

 

 

result1 test3 1


tape test4 ) (

result1 test4 0


tape test5 ( ) ( ) ( ( ( ) ) ( ) ) ) ( )

result1 test5 0


tape test6 ( ) ( ( ( ) ( ( ( ) ) ( ) ) )

result1 test6 0


tape test7 ( ) ( ( ) ( ( ( ) ) ( ) ) )

result1 test7 1


// define additional symbols, your states and actions here…


Note that you’re welcome to add your own test tapes while debugging your implementation, but 
you’ll need to comment them out before running the checkoff tests (otherwise the checksum 
mechanism will get confused). 

Scoring: The number of points you’ll receive is determined by the number of states in your TM 
definition: 

4 points: 2 states

3 points: 3 states

2 points: 4 states

1 point: 5 or more states


6.004 Computation Structures - 5 - Lab #4 


