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6.004 uses the C language, developed at Bell Telephone Laboratories, for the informal presentation of 
algorithms and program fragments. C is quite typical of modern compiled languages, and any reader with some 
programming experience should find the examples fairly readable. This overview is provided as an aid to 
understanding the simple C programs presented in the lectures. It falls far short of a complete introduction to the 
language, for which the interested reader is referred to Kernighan and Ritchie [1978]. 

C is a relatively low-level language, designed to be easily translated to efficient object code for many modern 
computers. Unlike LISP, for example, the semantics of C strongly reflect the assumption of compiled (rather 
than interpreted) implementations and a bias toward simplicity and efficiency of the translated program rather 
than flexibility and generality of the source language. In these respects, C is typical of languages in widespread 
use for production programming; other examples include FORTRAN, Pascal, and PL/1. 

Simple Data Types and Declarations

C offers several representations of integer data, differing in the number of bits used. The data types char, short, 
and long designate, respectively, 8-, 16-, and 32-bit signed integer data. The type int designates signed integer 
data of an implementation-dependent size; it is equivalent to short in some C implementations (typically those 
for 16-bit machines) and to long in others. 

Every variable in C has an associated compile-time type. Unlike some interpreted languages (for example, 
LISP), the type information in C is used only to make compile-time decisions regarding the object code 
(machine instructions) to be generated; the type information is not manipulated during program execution. A 
variable may be declared in C by declarations of the form: 

short x, y, z;      /* Declare three 16-bit integers. */
long a, b = 13;     /* Declare two 32-bit integers.   */

This C program fragment includes two declarations, signaling to the compiler that 16-bit storage locations are to 
be reserved for the storage of x, y, and z and that a and b require 32-bit storage. The = 13 clause in the 
declaration of b specifies an initial value; if absent, the initial value will be random. Note the use of /
* ... */ syntax to incorporate comments into the source program. 

The keyword unsigned may precede the type in a declaration; it serves as an adjective to notify the compiler 
that the declared variables represent natural numbers rather than signed integers. This information affects the 
compiler's choice of instructions in certain operations, such as comparisons and right shifts. 

C programs use integer data to represent Boolean (true/false) conditions. In general, zero is taken to mean false 
and nonzero represents true. 

Typed pointers can be manipulated in C. A pointer to a datum is represented at run time by a word containing 
the machine address of that datum; if the datum occupies multiple (consecutive) bytes, the pointer contains the 
lowest address occupied by the data to which it points. Pointer variables are declared using one or more asterisks 
preceding the variable name. Thus the declaration 



long a, *b, **c;

notifies the compiler that the variable a will have as its value a 32-bit integer, b will have as its value a pointer 
to a 32-bit integer (that is, the address of a memory location containing a long integer), and c's value will be a 
pointer to a location containing a pointer to a long integer. 

A procedure in C may return a value and is declared with a type corresponding to the value returned. The 
following is a typical procedure declaration: 

long add1(a)
 long a;
 {
       return a+1;
 }

Note that the name add1 of the procedure is preceded by the type of its returned value; this may be omitted if 
the procedure returns no value. Following the procedure name is a list of dummy arguments, separated by 
commas and surrounded by parentheses; these names become variables whose declaration immediately follows 
the argument list and whose scope is the body of the function, enclosed in braces. 

Expressions

The simplest C expressions consist of single constants or variables; 123 and x are each valid C expressions 
(assuming that x has been declared as a variable). More complicated expressions can be constructed using C 
operators, such as +, -, *, and /, which designate the usual arithmetic operations. Thus x/3+4 is an expression 
whose value (computed during program execution) is four plus the quotient of the value of x and three. 
Examples of expressions using C operators are given in the following table. 

Expression    Value
a + b Addition
a - b Subtraction
-a 2's complement (negative)
a * b Multiplication
a / b Division
a % b Modulus
(a) Value of a; parenthesis used for grouping
a < b True (nonzero) if a is less than b, else false
a > b True (nonzero) if a is greater than b, else false
a <= b Less-than-or-equal-to comparison
a >= b Greater-than-or-equal-to comparison



a == b Equal-to comparison (don't confuse with assignment =)
a != b Not-Equal-to comparison
!a True (nonzero) if a is false (zero); Boolean not
a && b Wordwise AND: false (zero) if either a or b is false
a || b Wordwise OR: true (nonzero) if either a or b is true
~a Bitwise complement of a
a & b Bitwise AND
a | b Bitwise OR
a >> b Integer a shifted right b bit positions
a << b Integer a shifted left b bit positions

x = a
Assignment: has value a, but sets the current value of x to the value of a (don't confuse 
with equal-to comparison ==)

&x Address of the variable x
*p Contents of the location whose address is p
f(a,b,...) Procedure call
p[a] Array reference: element a of array p
x.c Component c of structure x
p->c Component c of structure pointed to by p
sizeof x Size, in bytes, of the representation of x

In this table, a, b, f, and p may be replaced by valid expressions, while x must be a variable (since the storage 
location associated with it is referenced). c is a structure component name (see Structures). Note that = dictates 
assignment but is syntactically an operator; thus simple expressions such as 3*(x=x+1) may have side effects 
as well as values. 

The unary operators * and & can be used for referencing through and creating pointers. Thus, if a is an 
expression of type t, &a is an expression of type pointer to t. Conversely, if a is of type pointer to t, then *a is 
an expression of type t. 

The form f(a,b,...) denotes a procedure call and is an expression whose type is that declared for the 
function f. C procedure arguments are passed by value; thus the values (rather than the addresses) of the 
arguments (a$, b, and so on) are bound to the formal parameters of f during its execution. 

Statements and Programs

A statement in C is a single imperative or declarative command. Unlike an expression, a statement has no value; 
its purpose in the program stems from the effect it has, either during compilation or during execution. We have 
seen variable declarations, which typify the declarative class; the simplest example of an imperative statement is 



an expression followed by a semicolon: 

a = b+3;

This causes the evaluation of the given expression during program execution. Such a statement is of interest to 
the programmer, of course, because its execution causes the side effect of changing a's value. While a side-
effect-free expression such as a+3 can be made into a syntactically valid C statement by appending a semicolon, 
the exercise is clearly silly. 

Compound statements can be constructed by using braces to enclose a sequence of component statements that 
are to be treated as a syntactic unit. Thus 

{ temp=a; a=b; b=temp;
}

is a statement that has the effect of exchanging the values of a and b; we assume, of course, that a, b, and temp 
have been appropriately declared. Note that the body of a procedure, as specified in a procedure declaration, is 
just such a compound statement. 

Each compound statement is, in fact, a program block and may begin with declarations of variables that are local 
to that block. Thus the exchange of values in the above example might better be written as 

{ int temp;
  temp = a;
  a = b;
  b = temp;
}

Here the temporary location is local to the block, minimizing externally visible side effects. Note that variables 
declared inside a block are dynamic; they are allocated (from the stack) when the block is entered and are 
deallocated on exit from the block. Variables declared outside any block are static; they are effectively allocated 
at compile time and retain their values during the entire program execution. Variables declared with initial 
values (using the "= constant" declaration syntax) are initialized at allocation; a dynamic variable with a 
specified initial value is thus reinitialized at each entry to the block. 

Conditional execution can be specified using an if statement, optionally including an else clause, as follows: 

if (a < b) biggest = b;
else biggest = a;

The condition in the if statement is enclosed in parentheses and immediately follows the keyword if. At 
execution time, the conditional expression is evaluated; if it is true (nonzero), then the statement following the 
condition (the then clause of the if statement) is executed; otherwise it is skipped. The body of an else clause 
is executed if and only if the then clause of the immediately preceding if statement is skipped. Of course, the 



then clause and the else clause bodies may each be (and often are) program blocks. 

We shall use two C constructs for program loops: 

 
while (cond) statement;

and 

for (init; test; increment) statement;

The while statement repeatedly evaluates the conditional expression cond, executing statement once after each 
evaluation of cond until cond evaluates to false (zero). The for statement is semantically equivalent to 

init;
while (test)
 {      statement;
        increment;
 }

and provides a syntactically compact form for small loops. 

A C program consists of a set of declarations of procedures and data. The following C code is a simple example, 
using two versions of the Fibonacci function to illustrate these constructs. 

/* Fibonacci -- recursive version               */
long rfib(n)
long n;
{      if (n>1) return rfib(n-1) + rfib(n-2);
       else return n;
}

/* Fibonacci -- iterative version               */
long ifib(n)
long n;
{
       if (n<2) return n;
       else    { long val0, val1=0, val2=1, i;
                 for (i=1; i<n; i = i+1)
                       {       val0 = val2;
                               val2 = val2 + val1;
                               val1 = val0;
                       }
                 return val2;



               }
}      

C provides a multiway branch construct, the switch statement, allowing a given expression to be tested for a 
fixed number of constant values. The syntax of switch is illustrated by the next program, yet another 
Fibonacci function, which uses switch to handle certain commonly occurring arguments quickly. The case 
labels identify statements in the switch block to which control is transferred for various values of the switch 
expression; the value in each case label must be a compile-time constant. Control is transferred to the 
statement bearing the label default: if the switch value matches none of the case constants; in the example, 
the default action is to call one of the alternative Fibonacci procedures. 

/* Fibonacci -- "quick" (for small argument) version */
long qfib(n)
long n;
{      switch (n)
        {      case 0:
               case 1:  return n;
               case 2:  return 1;
               case 3:  return 2;
               case 4:  return 3;
               case 5:  return 5;
               case 6:  return 8;
               default: return ifib(n);
        }
}

Several additional C statements are provided for low-level control. We have seen that return expr; returns 
from the innermost enclosing procedure with the optional value expr; break; can be used in a similar way to 
exit the innermost enclosing for or while loop or switch block. A continue; statement within a loop 
terminates the current iteration, effectively jumping to the end of the loop body to perform the indicated 
increment and test operations and continue with the next iteration, if appropriate. A goto tag; statement, where 
the label tag: identifies a statement local to the procedure, provides the lowest-level control mechanism. It is 
occasionally convenient (for example, to exit several nested loops), as illustrated in by the following program. 

/* See if an x,y pair exists for which f(x) = g(y);
 * search each function's domain between 1 and the value for
 * which it returns 0.                                               */
Search(f, g)
 int f(), g();
 {      int x, y, fx, gy;
        for (x=0;  (fx = f(x)) != 0; x = x+1)
        {       for (y=0; ; y=y+1)
                {       if ((gy = g(y)) == 0) break;
                        if (fx != gy) continue;



                        else goto GotOne;     /* Found an answer!    */
                }
        }
        return 0;                             /* No answer found.    */
GotOne: return 1;                             /* Found an x,y pair.  */
 }

This program includes several notable features. First, it illustrates the use of procedure names as arguments; the 
procedures passed as f and g are presumed to be defined elsewhere in the program. (The actual arguments are, 
in fact, pointers to procedures; some C implementations require the somewhat inscrutable declaration syntax 
"int(*f)();" to reflect this fact.) Second, the end test in the outer for loop requires application of one of the 
argument procedures; to avoid redundant evaluation of f(x) within the loop body, the resulting value is 
assigned to a local variable. The end test of this loop thus contains an assignment; it is important to distinguish 
between the assignment fx=f(x) and the syntactically similar equality test fx==f(x). The corresponding 
end test of the inner for statement is left blank, resulting in two consecutive semicolon characters delimiting an 
empty expression. In this context, the missing conditional expression is equivalent to a nonzero constant 
expression, causing the loop to iterate forever unless other provisions are made. Execution of this inner loop is 
terminated by the explicit if statement within its body, which performs the assignment and test functions of the 
end test in the outer loop. The break statement in this conditional exits one level (back to the body of the outer 
loop) when g(y) evaluates to zero. The continue statement in the following if ends execution of the 
current iteration of the containing loop, continuing that loop with the next value of y if the fx and gy values 
differ. The goto in the else statement is used to exit both loops when a solution is found. In this example, the 
statement goto GotOne; could be replaced by a simple return 1;. Indeed, the latter coding is to be 
preferred since proliferation of goto statements can make program logic difficult to follow. In more 
complicated cases (for example, those involving substantial computation at GotOne: that is to be entered from 
a variety of different places), goto may be the most natural solution. 

The following table summarizes a set of useful C statement types. 

Statement type    Use
expr; Evaluate expression expr
if (test) statement; Conditional test
else statement; Optionally follows if statement

switch(expr) {
  case C1: ...
  case C2: ...
  ...
}

N-way branch (dispatch)

while (test) statement; Iteration
for (init; test; incr) statement;



return expr; Procedure return; expr is optional
break; Break out of loop or switch
continue; Continue to next loop iteration
tag: Define a label for goto

goto tag; Transfer control

Arrays and Pointers

In addition to simple scalar and pointer data, C provides two mechanisms for handling aggregate data objects 
stored in contiguous memory locations. The first of these is the single-dimensioned array or vector, declared 
using a bracketed constant following the variable name: 

/* 100-employee payroll record          */
long    Salary[100];
char    *Name[100];

This fragment declares two 100-element arrays, comprising 100 consecutive 32-bit and 8-bit locations, 
respectively. The brackets serve also as the C operator for referencing an array element; thus Salary[37] 
designates element 37 of the Salary array. C arrays are zero-indexed, meaning that the first element of 
Salary is Salary[0]; thus Salary[37] is, in fact, the thirty-eighth element. Salary[100] is an out-of-
bounds array reference since it refers to the 101st element of a 100-element array. 

Using the array indexing operator, the Salary array might be cleared as follows: 

{ int i;
  for (i=0; i<100; i=i+1) Salary[i] = 0;
}

From a type standpoint, C treats arrays as pointers; thus Salary will be treated in subsequent statements as a 
variable of type pointer to long. However, the declaration long Salary[100]; has the additional effect of 
reserving 400 bytes of storage for the Salary array and permanently binding the value of Salary to the 
beginning (lowest) address of the reserved storage. Similarly, the declaration char *Name[100]; causes 
Name to be treated in subsequent statements as if it had been declared char **Name, except that Name 
permanently identifies the start of a reserved memory block of sufficient size to hold 100 pointers. Since C 
views an array as a pointer to the first element of consecutive similarly typed data, it also allows a pointer to a 
block of memory to be used as an array. Thus, if a variable p is declared char *p and is set to point to a block 
of consecutive bytes of memory, references of the form p[i] can be used to access the ith element of p. 

Arrays declared using the "..." syntax must have sizes that are compile-time constants. However, available 
library procedures allocate variable-size contiguous regions of memory dynamically (that is, during program 
execution) and return pointers to them; such library routines allow more flexible and efficient use of memory. 
The Salary array in the above example could be allocated at run time rather than at compile time by rewriting 



it as 

long    *Salary; /* Simple pointer variable */
...
/* Allocate storage (N elements) for array: */
Salary = malloc(N*sizeof *Salary);
/* Use array: */
for (i=0; i=100; i=i+1) Salary[i] = 0;
...
/* Return array to free storage pool:       */
free(Salary);

In this example, the storage for the Salary array is allocated by an executable statement (that is, at run time) 
rather than by a declaration. This technique makes convenient use of C's happy confusion between pointers and 
arrays; the identical syntax (for example, Salary[i]) can be used to reference the elements of Salary 
independently of the means by which its storage is allocated. The library procedures malloc and free are 
used in this example to deal with a program-managed heap storage pool: p=malloc(s) allocates an s-byte 
region and returns a pointer to its first location, while free(p) returns a previously allocated block to the pool. 

Textual data are naturally represented in C as arrays of characters. Thus a text-string variable text would be 
declared char *text, and the ith character of its current (string) value can be referred to as text[i]. 
Constant text strings can be designated in C using the double-quote character "; thus "fungus" is a C constant 
of type char *. 

Structures

In addition to arrays, which have homogeneous type but variable size, C supports structures, which are fixed-
size records of heterogeneous data. A structure declaration provides a useful way to localize related data; our 
payroll data, for example, might naturally be given the type: 

struct Employee {
  char *Name;     /* Employee's name.      */
  long Salary;    /* Employee's salary.    */
};

This fragment describes a structure type and gives it the name Employee. Subsequent declarations can treat 
struct Employee as a valid C type; for example, 

struct Employee Payroll[100];

declares an array of 100 structures, each devoted to some employee's records. 

It should be understood that a structure declaration provides the compiler with a prototype for the interpretation 



of blocks of memory. In particular, each region of memory identified to the compiler as a struct Employee 
will begin with a pointer to a character string that holds the employee's name (occupying, say, the first 4 bytes of 
the region) and will contain in the immediately following 4 bytes a binary integer giving the employee's salary. 
The C syntax for referring to the components of a structure is "str.cname" where str designates a structure 
and cname is the name of one of its components. The salary of the fourth employee, for example, is referenced 
by Payroll[3].Salary. 

It is often both convenient and efficient to manipulate pointers to structures rather than structures themselves. 
This is particularly true when some struct type must contain another value of the same type. We might, for 
example, wish to expand our little payroll data base to include the supervisor of each employee: 

struct Employee {
  char *Name;                  /* Employee's name.      */
  long Salary;                 /* Employee's salary.    */
  struct Employee *Supervisor; /* Employee's boss.      */     
} Payroll[100];

Our goal here is to identify in each payroll record the record of the employee's supervisor. While it is perfectly 
legal in C to declare a structure component that is itself a struct type, the result is that the containing structure 
type is enlarged by the size of the contained structure. If the supervisor component were declared to be type 
struct Employee rather than a pointer to struct Employee, C would complain. We would have asked it 
to allocate a structure large enough for several elements, one of which is the same size as itself! 

We circumvent such difficulties by referencing the supervisor through a pointer to the appropriate payroll 
record. In addition, it is usually far preferable from a performance standpoint to pass pointers to structures (for 
example, as procedure arguments) rather than copies of the structures themselves. Since access to structures 
through pointers is so common, C provides the special syntax "p->cname'' to reference component cname of 
the structure that p points to. Use of structure pointers is illustrated by the silly program shown below. 

struct Employee {
  char *Name;                  /* Employee's name.     */
  long Salary;                 /* Employee's salary.   */
  long Points;                 /* Brownie points.      */
  struct Employee *Supervisor; /* Employee's boss.     */     
}

/* Annual raise program.   */
Raise(p)
  struct Employee p[100];
 {      int i;
        for (i=0; i<100; i=i+1)    /* Consider each employee. */
         { p->Salary =
                p->Salary          /* Salary adjustment:      */
                + 100              /*  cost-of-living term,   */
                + p->Points;       /*  merit term.            */



           p->Points = 0;          /* Start over next year!   */
           p = p+1;                /* On to next record!      */
           Check(p);             /* Make sure no disparities. */
          }
 }

/* Make sure employee is getting less than boss:             */
Check(e)
  struct Employee *e;               /* Pointer to record.    */
 {
        if (e == e->Supervisor)     /* Ignore the president  */
                return;             /*  (pres. is own boss). */
        if (e->Salary <             /* Problem here?         */
            (e->Supervisor)->Salary)
                return;             /* Nope, leave happy.    */
        /* When e's boss is making no more than e is,
         * give boss a raise, then check that boss's
         * new salary causes no additional problems:
         */
        (e->Supervisor)->Salary =
                1 + e->Salary;      /* Now boss makes more.  */
        Check(e->Supervisor);       /* Check further.         */
 }


