

Introduction to Algorithms: 6.006
Massachusetts Institute of Technology
Instructors: Erik Demaine, Jason Ku, and Justin Solomon Problem Set 2

Problem Set 2
Please write your solutions in the LATEX and Python templates provided. Aim for concise
solutions; convoluted and obtuse descriptions might receive low marks, even when they are
correct.

Problem 2-1. [15 points] Solving recurrences
Derive solutions to the following recurrences. A solution should include the tightest upper and
lower bounds that the recurrence will allow. Assume T (1) = Θ(1).

Solve parts (a), (b), and (c) in two ways: drawing a recursion tree and applying Master Theorem.
Solve part (d) only by substitution.

(a) [4 points] T (n) = 4 T (n
2) + O(n)

Solution: T (n) = Θ(n2) by case 1 of the Master Theorem, since logb a = 2 and
f(n) = O(n2−ε) for any positive ε ≤ 1. Note that this is true no matter the choice of
f(n) ∈ O(n).

cn

c n
2i

c ×4log n = n2

×4i

×1

nDrawing a tree, there are 4i vertices at depth i each doing at most c
2i work, so the

ntotal work at depth i is at most 4ic
2i = 2

icn. Summing over the entire tree, the total
work is at most

log n log nX X
= cn(2log n+1 − 1) < 2cn 22i cn = cn 2i = O(n 2)

i=0 i=0

Since Θ(1) work is done at each leaf, and there are n2 leaves, the total work is at least
Ω(n2) leading to Θ(n2) running time.

(b) [4 points] T (n) = 3 T (√n) + O(n4)
2

Solution: We can upper bound T (n) by choosing f(n) = Θ(n4). Then T (n) =
O(n4) by case 3 of the Master Theorem, since logb a = log√

2 3 = 2 lg 3 and Θ(n4) ⊆
3 4 4Ω(n2 lg 3+ε) for any positive ε ≤ (4 − 2 lg 3), and 3(√n)4 = n < cn for any

2 4
3 < c < 1.
4

Alternatively, we can lower bound T (n) by choosing f(n) = 0. Then T (n) =
Ω(n2 lg 3) by case 1 of the Master Theorem, since logb a = log√

2 3 = 2 lg 3 and
0 ∈ O(n2 lg 3−ε) for any positive ε ≤ 2 lg 3.

2 Problem Set 2

cn4

c n 4

4i

c ×32 lg n

×3i

×1

� �4
n nDrawing a tree, there are 3i vertices at depth i, each doing at most c √
2i = c

4

4i

work, so the total work at depth i is at most c
4
3
i

i
n4 . Summing over the entire tree, the

total work is at most
2 log n

3i
∞ � �iX X 34 4 4 c n < cn = 4cn ,

4i 4
i=0 i=0

so T (n) = O(n4). Alternatively, there are 32 lg n = n2 lg 3 leaves in the tree, each doing
2 lg 3).Θ(1) work, so T (n) is at least Ω(n

(c) [4 points] T (n) = 2 T (n
2) + 5n log n

Solution: T (n) = Θ(n log2 n) by case 2 of the Master Theorem, since logb a = 1
and f(n) = 5n log n = Θ(n1 log1 n).

5n log n ×1

5 n
2i log n

2i

0 ×2log n = n

×2i

Drawing a tree, there are 2i vertices at depth i each doing 5 n log n work, so the total
2i 2i

work at depth i is 5n log
2
n
i = 5n(log n − i). In other words, the total work on jth level

from the bottom is 5nj. Summing over the entire tree, the total work is
log n log nX X log n(log n − 1)

5n(log n − i) = 5n j = 5n = Θ(n log2 n).
2

i=0 j=0

3 Problem Set 2

(d) [3 points] T (n) = T (n − 2) + Θ(n)

Solution: Guess T (n) = cn2

cn 2 =
?
c(n − 2)2 + Θ(n)

cn 2 =
?
cn 2 − 4cn + 4c + Θ(n)

4cn − 4c = Θ(n)

So T (n) = Θ(n2).

Rubric: For parts (a)-(c)

• Parts (a)-(c)
– 1 points for drawing of tree
– 1 points for analysis based on tree
– 2 points for analysis via Master Theorem
– Partial credit may be awarded

• Part (d)
– 3 points for correct analysis based on substitution
– Partial credit may be awarded

Problem 2-2. [15 points] Sorting Sorts
For each of the following scenarios, choose a sorting algorithm (from either selection sort, insertion
sort, or merge sort) that best applies, and justify your choice. Don’t forget this! Your justification
will be worth more points than your choice. Each sort may be used more than once. If you find
that multiple sorts could be appropriate for a scenario, identify their pros and cons, and choose the
one that best suits the application. State and justify any assumptions you make. “Best” should be
evaluated by asymptotic running time.

(a) [5 points] Suppose you are given a data structure D maintaining an extrinsic order
on n items, supporting two standard sequence operations: D.get at(i) in worst-
case Θ(1) time and D.set at(i, x) in worst-case Θ(n log n) time. Choose an
algorithm to best sort the items in D in-place.
Solution: This part requires an in-place sorting algorithm, so we cannot choose
merge sort, as merge sort is not in-place. Insertion sort performs O(n2) get at and
O(n2) set at operations, so would take O(n3 log n) time with this data structure.
Alternatively, selection sort performs O(n2) get at operations but only O(n) set at
operations, so would take at most O(n2 log n) time with this data structure, so we
choose selection sort.

(b) [5 points] Suppose you have a static array A containing pointers to n comparable
objects, pairs of which take Θ(log n) time to compare. Choose an algorithm to best
sort the pointers in A so that the pointed-to objects appear in non-decreasing order.

4 Problem Set 2

Solution: For this problem, reads and writes take constant time, but comparisons are
expensive, O(log n). Selection and insertion sorts both perform O(n2) comparisons in
the worst case, while merge sort only performs O(n log n) comparisons, so we choose
merge sort.

(c) [5 points] Suppose you have a sorted array A containing n integers, each of which
fits into a single machine word. Now suppose someone performs some log log n swaps
between pairs of adjacent items in A so that A is no longer sorted. Choose an algorithm
to best re-sort the integers in A.
Solution: The performance of selection sort and merge sort do not depend on the
input; they will run in Θ(n2) and Θ(n log n) time, regardless of the input. Insertion
sort, on the other hand, can break early on the inner loop, so can run in O(n) time on
some inputs. To prove that insertion sort runs in O(n) time for the provided inputs,
observe that performing a single swap between adjacent items can change the number
of inversions1 in the array by at most one. Alternatively, every time insertion sort
swaps two items in the inner loop, it fixes an inversion. Thus, if an array is k adjacent
swaps from sorted, insertion sort will run in O(n + k) time. For this problem, since
k = log log n = O(n), insertion sort runs in O(n) time, so we choose insertion sort.
Rubric:
• 2 points for choice of sorting algorithm
• 3 points for justification
• Partial credit may be awarded

Problem 2-3. [10 points] Friend Finder
Jean-Locutus Πcard is searching for his incapacitated friend, Datum, on Gravity Island. The is-
land is a narrow strip running north–south for n kilometers, and Πcard needs to pinpoint Datum’s
location to the nearest integer kilometer so that he is within visual range. Fortunately, Πcard has a
tracking device, which will always tell him whether Datum is north or south of his current position
(but sadly, not how far away he is), as well as a teleportation device, which allows him to jump to
specified coordinates on the island in constant time.

Unfortunately, Gravity Island is rapidly sinking. The topography of the island is such that the
north and south ends will submerge into the water first, with the center of the island submerging
last. Therefore, it is more important that Πcard find Datum quickly if he is close to either end of
the island, lest he short-circuit. Describe an algorithm so that, if Datum is k kilometers from the
nearest end of the island (i.e., he is either at the kth or the (n − k)th kilometer, measured from
north to south), then Πcard can find him after visiting O(log k) locations with his teleportation and
tracking devices.

Solution: We can generalize the idea of binary search to search quickly from both ends. The idea
will be to alternately search inward from either end of the island exponentially until Πcard just

1Two comparable items in an array are inverted if they appear in the wrong order. The number of inversions in an
array are the number of pairs of items that are inverted.

5 Problem Set 2

passes Datum, and then use normal binary search to pinpoint Datum’s precise location. Specif-
ically, tell Πcard to alternately teleport to 2i and n − 2i for increasing i starting at 0 until either
Datum is found, or until Datum has been passed, i.e., Datum is observed north of 2j−1 but south
of 2j for some j, or south of n − 2j−1 but north of n − 2j for some j. Reaching this state will
take O(j) time, since at most 2j locations will be visited, and then binary searching within the
remaining 2j−1 kilometer stretch of the island will also take at most O(j) time. But since either
2j−1 < k < 2j or n − 2j < n − k < n − 2j−1, then j − 1 < lg k < j and j = O(log k), as desired.
This algorithm is correct because it identifies a bounded range where Datum is known to exists,
and reduces to binary search which will correctly return Datum’s location.

Rubric:

• 6 points for description of a correct algorithm

• 2 points for a correct argument of correctness

• 2 points for a correct analysis of running time

• Partial credit may be awarded

Problem 2-4. [15 points] MixBookTube.tv Chat

MixBookTube.tv is a service that lets viewers chat while watching someone play video games.
Each viewer is identified by a known unique integer ID2. The chat consists of a linear stream of
messages, each written by a viewer. Viewers can see the most recent k chat messages, where k
depends on the size of their screen. Sometimes a viewer misbehaves in chat and gets banned by
the streamer. When a viewer gets banned, not only can they not post new messages in chat, but all
of their previously sent messages are removed from the chat.

Describe a database to efficiently implement MixBookTube.tv’s chat, supporting the following
operations, where n is the number of all viewers (banned or not) in the database at the time of the
operation (all operations should be worst-case):

build(V) Initialize a new chat room with the n = |V| viewers in V in O(n log n) time.
send(v, m) Send message m to the chat from viewer v (unless banned) in O(log n) time.
recent(k) Return the k most recent not-deleted messages (or all if < k) in O(k) time.
ban(v) Ban viewer v and delete all their messages in O(nv + log n) time,

where nv is the number of messages that viewer v sent before being banned.

Solution: We will implement the database by maintaining two data structures:

• a doubly-linked list L containing the sequence of all undeleted messages in the chat in chrono-
logical order, and

• a sorted array S of pairs (v, pv) keyed on v, where v is a viewer ID and pv is a pointer
to a viewer-specific singly-linked list Lv storing pointers to all the nodes in L containing a

2As mentioned in lecture, unless we parameterize the size of numbers in our input, you should assume that input
integers each fit within a machine word, so pairs of them may be compared in constant time.

https://MixBookTube.tv
https://MixBookTube.tv

6 Problem Set 2

message posted by viewer v. We will use pv pointing to None to signify that viewer v has
been banned.

To support build(V), initialize L to be an empty linked list in O(1) time, initialize S of size
n = |V| containing (v, pv) for each viewer v ∈ V in O(n) time, initialize the empty linked list Lv

for each v ∈ V in O(1) time each, and then sort S in O(n log n) time, e.g., using merge sort. This
operation takes worst-case O(n log n) time in total, and maintains the invariants of the database.

To support send(v, m), find Lv by searching for v in S in worst-case O(log n) time, and then, if
Lv is not None (i.e., the user is not banned), insert m into a node x at the front of L in worst-case
constant time and insert a pointer to x into Lv in worst-case constant time. This operation takes
worst-case O(log n) time in total, and maintains the invariants of the database.

To support recent(k), simply traverse the first k nodes of L and return their messages. As long
as the invariants on the database are correct, this operation directly returns the requested messages
in worst-case O(k) time.

To support ban(v), find Lv by searching for v in S in worst-case O(log n) time. Then for each
of the nv pointers in Lv pointing to a node x in L, remove x from L by relinking pointers in L
in worst-case constant time. Lastly, set pv to point to None. This operation is correct because it
maintains the invariants of the database, and runs in worst-case O(nv + log n) time.

Rubric:

• 3 points for general description of a correct database

• 2 point for description of a correct build(V)

• 2 points for description of a correct send(v, m)

• 2 points for description of a correct recent(k

• 2 points for description of a correct ban(v)

• 1 point for analysis for each operation (4 points total)

• Partial credit may be awarded

Problem 2-5. [45 points] Beaver Bookings
Tim the Beaver is arranging Tim Talks, a lecture series that allows anyone in the MIT community
to schedule a time to talk publicly. A talk request is a tuple (s, t), where s and t are the starting
and ending times of the talk respectively with s < t (times are positive integers representing the
number of time units since some fixed time).

Tim must make room reservations to hold the talks. A room booking is a triple (k, s, t), corre-
sponding to reserving k > 0 rooms between the times s and t where s < t. Two room bookings
(k1, s1, t1) and (k2, s2, t2) are disjoint if either t1 ≤ s2 or t2 ≤ s1, and adjacent if either t1 = s2

or t2 = s1. A booking schedule is an ordered tuple of room bookings where: every pair of room
bookings from the schedule are disjoint, room bookings appear with increasing starting time in the
sequence, and every adjacent pair of room bookings reserves a different number of rooms.

7 Problem Set 2

Given a set R of talk requests, there is a unique
booking schedule B that satisfies the requests, i.e.,
the schedule books exactly enough rooms to host all
the talks. For example, given a set of talk requests
R = {(2, 3), (4, 10), (2, 8), (6, 9), (0, 1), (1, 12), (13, 14)}
pictured to the right, the satisfying room booking is:

B = ((1, 0, 2), (3, 2, 3), (2, 3, 4), (3, 4, 6), (4, 6, 8), (3, 8, 9), (2, 9, 10), (1, 10, 12), (1, 13, 14)).

(a) [15 points] Given two booking schedules B1 and B2, where n = |B1| + |B2| and B1

and B2 are the respective booking schedules of two sets of talk requests R1 and R2,
describe an O(n)-time algorithm to compute a booking schedule B for R = R1 ∪ R2.
Solution: To merge two booking schedules, our approach will be to maintain a
time x (initially 0) and an (initially empty) booking schedule B, so that B will be
the satisfying booking for R1 ∪ R2 up to time x. This invariant is trivially true at
initialization since all times are positive, and so long as we maintain this invariant
while increasing x, B will be a covering booking schedule for all of R1 ∪ R2 once x
increases past the last ending time of any request (will be satisfying except for possible
adjacent bookings with the same number of rooms reserved). During this process,
we also maintain indices i1 and i2 (initially zero) into booking schedules B1 and B2

respectively, which will each correspond to the index of the earliest room booking
from its respective schedule whose ending time is strictly after x.
Now we perform a loop to repeatedly increase x and append a new booking request to
B so as to satisfy the invariant, until all requests from B1 and B2 have been processed,
i.e., i1 = |B1| and i2 = |B2|. There are five cases, either:

• one schedule has been depleted (either i1 = |B1| or i2 = |B2|), so take the
next booking request (k, s, t) from the non-depleted schedule, and append to B
(k, max(s, x), t), increase x to t, and increase the relevent schedule index; or

• neither schedule has been depleted, so either:
– neither next booking from either schedule overlaps x, so increase x to be the

minimum start time in either booking; or
– the next booking (k, s, t) from either schedule does not overlap a booking in

the other schedule after time x, so append (k, x, t) to B, increase x to t, and
increase the relevant schedule index; or

– the next booking (k, s, t) from either schedule overlaps a booking (k0, s0, t0)
in the other schedule at a time s0 > x, so append (k, x, s0) to B and increase
x to s0; or

– bookings (k, s, t) and (k0, s0, t0) from both schedules overlap after and at time
x until t ∗ = min(t, t0), so append (k + k0, x, t ∗) to B, increase x to t ∗ , and
increase whichever schedule indices correspond to reservations that end at
time t ∗ .

8 Problem Set 2

This procedure maintains the invariants asserted above, so upon termination, B is a
covering booking request for R. Constant work is done in each execution of the above
loop, and since x increases in every loop to a strictly larger time from the set of O(n)
times found in B1 or B2, this procedure takes O(n) time.
Lastly, to make the booking satisfying, we loop through the bookings and combine
any adjacent bookings that have the same number of rooms in O(n) time.
Rubric:
• 9 points for description of a correct algorithm
• 3 points for a correct argument of correctness
• 3 points for a correct analysis of running time
• Partial credit may be awarded

(b) [5 points] Given a set R of n talk requests, describe an O(n log n)-time algorithm to
return the booking schedule that satisfies R.
Solution: Evenly divide R into two Θ(|R|) sized sets R1 and R2 and recursively
compute booking schedules B1 and B2 that satisfy R1 and R2 respectively. Then
compute a satisfying booking B for R using part (a) in O(n) time. As a base case,
when |R| = 1 and R = {(s, t)}, the satisfying booking is ((1, s, t),), so return it in T
heta(1) time. This algorithm follows the recurrence T (n) = 2T (n/2) + O(n), so by
Master Theorem case 2, this algorithm runs in O(n log n) time.
Rubric:
• 3 points for description of a correct algorithm
• 1 point for a correct argument of correctness
• 1 point for a correct analysis of running time
• Partial credit may be awarded

(c) [25 points] Write a Python function satisfying booking(R) that implements
your algorithm. You can download a code template containing some test cases from
the website.

5

10

15

20

25

30

35

40

45

50

9 Problem Set 2

Solution:
1 def merge_bookings(B1, B2):
2 n1, n2, i1, i2 = len(B1), len(B2), 0, 0
3 x = 0 # invariant: t < min(t1, t2)
4 B = [] # invariant: B is satisfying booking up to time x

while i1 + i2 < n1 + n2:
6 if i1 < n1: k1, s1, t1 = B1[i1]
7 if i2 < n2: k2, s2, t2 = B2[i2]
8 if i2 == n2: # only bookings in B1 remain
9 k, s, x = k1, max(x, s1), t1

i1 += 1
11 elif i1 == n1: # only bookings in B2 remain
12 k, s, x = k2, max(x, s2), t2
13 i2 += 1
14 else: # bookings remain in B1 and B2

if x < min(s1, s2): # shift x to start of first booking
16 x = min(s1, s2)
17 if t1 <= s2: # overlaps only B1 up to t1
18 k, s, x = k1, x, t1
19 i1 += 1

elif t2 <= s1: # overlaps only B2 up to t2
21 k, s, x = k2, x, t2
22 i2 += 1
23 elif x < s2: # overlaps only B1 up to s2
24 k, s, x = k1, x, s2

elif x < s1: # overlaps only B2 up to s1
26 k, s, x = k2, x, s1
27 else: # overlaps B1 and B2 up to t1 or t2
28 k, s, x = k1 + k2, x, min(t1, t2)
29 if t1 == x: i1 += 1

if t2 == x: i2 += 1
31 B.append((k, s, x))
32 B_ = [B[0]] # remove adjacent with same rooms
33 for k, s, t in B[1:]:
34 k_, s_, t_ = B_[-1]

if (k == k_) and (t_ == s):
36 B_.pop()
37 s = s_
38 B_.append((k, s, t))
39 return B_

41 def satisfying_booking(R):
42 if len(R) == 1: # base case
43 s, t = R[0]
44 return ((1, s, t),)

m = len(R) // 2
46 R1, R2 = R[:m], R[m:] # divide
47 B1 = satisfying_booking(R1) # conquer
48 B2 = satisfying_booking(R2) # conquer
49 B = merge_bookings(B1, B2) # combine

return tuple(B)

MIT OpenCourseWare
https://ocw.mit.edu

6.006 Introduction to Algorithms
Spring 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

https://ocw.mit.edu
https://ocw.mit.edu/terms

	cover.pdf
	Blank Page

