

Introduction to Algorithms: 6.006
Massachusetts Institute of Technology
Instructors: Erik Demaine, Jason Ku, and Justin Solomon Problem Set 4

Problem Set 4

Please write your solutions in the LATEX and Python templates provided. Aim for concise
solutions; convoluted and obtuse descriptions might receive low marks, even when they are
correct.

Problem 4-1. [10 points] Binary Tree Practice

(a) [2 points] The Set Binary Tree T below is not height-balanced but does satisfy the
binary search tree property, assuming the key of each integer item is itself. Indicate
the keys of all nodes that are not height-balanced and compute their skew.

47

16

3 37

35

28

84

64

49

86

88

(b) [5 points] Perform the following insertions and deletions, one after another in se-
quence on T, by adding or removing a leaf while maintaining the binary search tree
property (a key may need to be swapped down into a leaf). For this part, do not use
rotations to balance the tree. Draw the modified tree after each operation.

1 T.insert(2)
2 T.delete(49)
3 T.delete(35)
4 T.insert(85)
5 T.delete(84)

(c) [3 points] For each unbalanced node identified in part (a), draw the two trees that
result from rotating the node in the original tree left and right (when possible). For
each tree drawn, specify whether it is height-balanced, i.e., all nodes satisfy the AVL
property.

2 Problem Set 4

Note: Material on this page requires material that will be covered in L08 on March 3, 2020. We
suggest waiting to solve these problem until after that lecture. All other pages of this assignment
can be solved using only material from L07 and earlier.

Problem 4-2. Heap Practice [10 points]

For each array below, draw it as a complete1 binary tree and state whether the tree is a max-heap,
a min-heap, or neither. If the tree is neither, turn the tree into a min-heap by repeatedly swapping
items that are adjacent in the tree. Communicate your swaps by drawing a sequence of trees,
marking on each tree the pair that was swapped.

(a) [4, 12, 8, 21, 14, 9, 17]

(b) [701, 253, 24, 229, 17, 22]

(c) [2, 9, 13, 8, 0, 2]

(d) [1, 3, 6, 5, 4, 9, 7]

Problem 4-3. [10 points] Gardening Contest
Gardening company Wonder-Grow sponsors a nation-wide gardening contest each year where they
rate gardens around the country with a positive integer2 score. A garden is designated by a garden
pair (si, ri), where si is the garden’s assigned score and ri is the garden’s unique positive integer
registration number.

(a) [5 points] To support inclusion and reduce competition, Wonder-Grow wants to award
identical trophies to the top k gardens. Given an unsorted array A of garden pairs and
a positive integer k ≤ |A|, describe an O(|A| + k log |A|)-time algorithm to return the
registration numbers of k gardens in A with highest scores, breaking ties arbitrarily.

(b) [5 points] Wonder-Grow decides to be more objective and award a trophy to every
garden receiving a score strictly greater than a reference score x. Given a max-heap A
of garden pairs, describe an O(nx)-time algorithm to return the registration numbers
of all gardens with score larger than x, where nx is the number of gardens returned.

1Recall from Lecture 8 that a binary tree is complete if it has exactly 2i nodes of depth i for all i except possibly
the largest, and at the largest depth, all nodes are as far left as possible.

2In this class, when an integer or string appears in an input, without listing an explicit bound on its size, you should
assume that it is provided inside a constant number of machine words in the input.

3 Problem Set 4

Problem 4-4. [15 points] Solar Supply

Entrepreneur Bonty Murns owns a set S of n solar farms in the town of Fallmeadow. Each solar
farm (si, ci) ∈ S is designated by a unique positive integer address si and a farm capacity ci: a
positive integer corresponding to the maximum energy production rate the farm can support. Many
buildings in Fallmeadow want power. A building (bj , dj) is designated by a unique name string bj
and a demand dj : a positive integer corresponding to the building’s energy consumption rate.

To receive power, a building in Fallmeadow must be connected to a single solar farm under the
restriction that, for any solar farm si, the sum of demand from all the buildings connected to si may
not exceed the farm’s capacity ci. Describe a database supporting the following operations, and for
each operation, specify whether your running time is worst-case, expected, and/or amortized.

initialize(S) Initialize database with a list S = ((s0, c0), . . . , (sn−1, cn−1))
corresponding to n solar farms in O(n) time.

power on(bj ,dj) Connect a building with name bj and demand dj to any
solar farm having available capacity at least dj in O(log n) time
(or return that no such solar farm exists).

power off(bj) Remove power from the building with name bj in O(log n) time.
customers(si) Return the names of all buildings supplied by the farm at address si

in O(k) time, where k is the number of building names returned.

Problem 4-5. [15 points] Robot Wrangling

Dr. Squid has built a robotic arm from n+1 rigid bars called links, each connected to the one before
it with a rotating joint (n joints in total). Following standard practice in robotics3, the orientation
of each link is specified locally relative to the orientation of the previous link. In mathematical
notation, the change in orientation at a joint can be specified using a 4 × 4 transformation matrix.
Let M = (M0, . . . ,Mn−1) be an array of transformation matrices associated with the arm, where
matrix Mk is the change in orientation at joint k, between links k and k + 1.

To compute the position of the end effector4, Dr. Squid will need the arm’s full transformation:Qn−1the ordered matrix product of the arm’s transformation matrices, k=0 Mk = M0 · M1 · . . . · Mn−1.
Assume Dr. Squid has a function matrix multiply(M1,M2) that returns the matrix product5

M1 × M2 of any two 4 × 4 transformation matrices in O(1) time. While tinkering with the arm
changing one joint at a time, Dr. Squid will need to re-evaluate this matrix product quickly. De-
scribe a database to support the following worst-case operations to accelerate Dr. Squid’s work-
flow:

initialize(M) Initialize from an initial input configuration M in O(n) time.
update joint(k,M) Replace joint k’s matrix Mk with matrix M in O(log n) time.
full transformation() Return the arm’s current full transformation in O(1) time.

3More on forward kinematic robotics computation here: https://en.wikipedia.org/wiki/Forward_kinematics
4i.e., the device at the end of a robotic arm: https://en.wikipedia.org/wiki/Robot_end_effector
5Recall, matrix multiplication is not commutative, i.e., M1 · M2 6= M2 · M1, except in very special circumstances.

https://en.wikipedia.org/wiki/Forward_kinematics
https://en.wikipedia.org/wiki/Robot_end_effector

4 Problem Set 4

Problem 4-6. [40 points] πz2a Optimization

Liza Pover has found a Monominos pizza left over from some big-TEX recruiting event. The pizza
is a disc6 with radius z, having n toppings labeled 0, . . . , n − 1. Assume z fits in a single machine
word, so integer arithmetic on O(1) such integers can be done in O(1) time. Each topping i:

• is located at Cartesian coordinates (xi, yi) where xi, yi are integers from range R = {−z, . . . , z}
(you may assume that all coordinates are distinct), and

• has integer tastiness ti ∈ R (note, topping tastiness can be negative, e.g., if it’s pineapple7).

Liza wants to pick a point (x0, y0) and make a pair of cuts from that point, one going straight down
and one going straight left, and take the resulting slice, i.e., the intersection of the pizza with the
two half-planes x ≤ x0 and y ≤ y0 . The tastiness of this slice is the sum of all ti such that xi ≤ x0

and yi ≤ y0 . Liza wants to find a tastiest slice, that is, a slice of maximum tastiness. Assume there
exists a slice with positive tastiness.

(a) [2 points] If point (x0 , y0) results in a slice with tastiness t =6 0, show there exists i, j ∈
{0, 1, . . . , n − 1} such that point (xi, yj) results in a slice of equal tastiness t (i.e., a
tastiest slice exists resulting from a point that is both vertically and horizontally
aligned with toppings).

(b) [8 points] To make finding a tastiest slice easier, show how to modify a Set AVL Tree
so that:

• it stores key–value items, where each item x contains a value x.val (in addition
to its key x.key on which the Set AVL is ordered);

• it supports a new tree-level operation max prefix() which returns in worst-
case O(1) time a pair (k∗ , prefix(k∗)), wherePk∗ is any key stored in the tree T that
maximizes the prefix sum, prefix(k) = {x.val | x ∈ T and x.key ≤ k}(that is, the
sum of all values of items whose keys are ≤ k); and

• all other Set AVL Tree operations maintain their running times.

(c) [5 points] Using the data structure from part (b) as a black box, describe a worst-case
O(n log n)-time algorithm to return a triple (x, y, t), where point (x, y) corresponds
to a slice of maximum tastiness t.

(d) [25 points] Write a Python function tastiest slice(toppings) that implements
your algorithm from part (c), including an implementation of your data structure from
part (b).

6The pizza has thickness a, so it has volume πz2a.
7If you believe that Liza’s Pizza preferences are objectively wrong, feel free to assert your opinions on Piazza.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

5 Problem Set 4

from Set_AVL_Tree import BST_Node, Set_AVL_Tree

class Key_Val_Item:
def __init__(self, key, val):

self.key = key
self.val = val

def __str__(self):
return "%s,%s" % (self.key, self.val)

class Part_B_Node(BST_Node):
def subtree_update(A):

super().subtree_update()

ADD ANY NEW SUBTREE AUGMENTATION HERE #

class Part_B_Tree(Set_AVL_Tree):
def __init__(self):

super().__init__(Part_B_Node)

def max_prefix(self):
’’’
Output: (k, s) | a key k stored in tree whose

| prefix sum s is maximum
’’’
k, s = 0, 0
##################
YOUR CODE HERE #
##################
return (k, s)

def tastiest_slice(toppings):
’’’
Input: toppings | List of integer tuples (x,y,t) representing

| a topping at (x,y) with tastiness t
Output: tastiest | Tuple (X,Y,T) representing a tastiest slice

| at (X,Y) with tastiness T
’’’
B = Part_B_Tree() # use data structure from part (b)
X, Y, T = 0, 0, 0
##################
YOUR CODE HERE #
##################
return (X, Y, T)

MIT OpenCourseWare
https://ocw.mit.edu

6.006 Introduction to Algorithms
Spring 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

https://ocw.mit.edu
https://ocw.mit.edu/terms

	cover.pdf
	Blank Page

