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Problem Session 4 

Problem 4-1. Sequence Rotations 

Below is a Sequence AVL Tree T. Perform operation T.delete at(8) and draw the tree after 
each rotation operation performed during the operation. 

1 ______6_____ 
2 _____4____ __12_____ 
3 __11__ __5 7 __10 
4 __3 1 9 8 
5 2 

Solution: 

1 ______6_____ delete ______6___ 
2 _____4____ __12_____ _____4____ 12_____ 
3 __11__ __5 (7) __10 => __11__ __5 __10 
4 __3 1 9 8 __3 1 9 8 
5 2 2 
6 

7 ______6___ right ______6___ 
8 _____4____ 12_____ rotate _____4____ 12__ 
9 __11__ __5 _(10) => __11__ __5 8___ 

10 __3 1 9 8 __3 1 9 10 
11 2 2 
12 

13 ______6___ left ______6_____ 
14 _____4____ (12)_ rotate _____4____ ___8___ 
15 __11__ __5 8___ => __11__ __5 12 10 
16 __3 1 9 10 __3 1 9 
17 2 2 
18 

19 _____(6)____ right _____4______ 
20 _____4____ ___8___ rotate __11__ __6_____ 
21 __11__ __5 12 10 => __3 1 __5 ___8___ 
22 __3 1 9 2 9 12 10 
23 2 
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Problem 4-2. Fick Nury 

Fick Nury directs an elite group of n superheroes called the Revengers. He has heard that su-
pervillian Sanos is making trouble on a distant planet and needs to decide whether to confront her. 
Fick surveys the Revengers and compiles a list of n polls, where each poll is a tuple matching a 
different Revenger’s name with their integer opinion on the topic. Opinion +s means they are for 
confronting Sanos with strength s, while opinion −s means they are against confronting Sanos 
with strength s. Fick wants to generate a list containing the names of the log n Revengers having 
the strongest opinions (breaking ties arbitrarily), so he can meet with them to discuss. For this 
problem, assume that the record containing the polls is read-only access controlled (the material 
in classified), so any computation must be written to alternative memory. 

(a) Describe an O(n)-time algorithm to generate Fick’s list. 
Solution: Build a maximum priority queue containing all Revengers (together with 
their names). The priority queue stores at most n Revengers, so should take up no 
more than O(n) space. Key each Revenger ri with opinion si on the pair (|si|, i) to 
make keys unique. Then delete the maximum keyed Revenger log n times and return 
the results. The running time of this algorithm is B(n) + (log n) · D where B(n) is 
the time to build a priority queue of size n and D is the time for delete max. We can 
achieve the desired running time by using a binary max-heap as our priority queue, 
since build takes O(n) time and deletions take amortized O(log n) time. 

(b) Now suppose Fick’s computer is only allowed to write to at most O(log n) space. 
Describe an O(n log log n)-time algorithm to generate Fick’s list. 
Solution: Build a minimum priority queue containing the opinions of the first log n 
Revengers in the list (together with their names). Key each Revenger ri with opinion 
si on the pair (|si|, i) to make keys unique. Then repeat the following procedure for the 
remaining Revengers, while maintaining the invariant that after processing Revenger 
i, the priority queue contains the log n Revengers from the first i having the highest 
absolute opinion, which is true for i = log n and would solve our problem when i = n: 
(1) delete the minimum Revenger r ∗ from the priority queue, (2) compare the key of r ∗ 

to that of the ith Revenger ri, and (3) insert whichever is larger into the priority queue. 
If ri < r ∗, then ri is smaller than every Revenger in the priority queue so is not in the 

∗top log n. Alternatively, if r < ri, then ri is larger than the kth largest found so far. In 
either case, adding the larger to the priority queue maintains the invariant. In all cases, 
the priority queue stores at most log n Revengers, so should take up no more than 
O(log n) space. The running time of this algorithm is B(log n)+(n − log n) · (I + D) 
where B(log n) is the time to build a priority queue of size log n and I and D are the 
time for insertion and delete min respectively. Thus we can use either a Set AVL tree 
or a min-heap as our priority queue to achieve O(n log log n) running time, using at 
most O(log n) space. 
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Problem 4-3. SCLR 

Stormen, Ceiserson, Livest, and Rein are four academics who wrote a very popular textbook in 
computer science, affectionately known as SCLR. They just found k first editions in their offices, 
and want to auction them off online for charity. Each bidder in the auction has a unique integer 
bidder ID and can bid some positive integer amount for a single copy (but may increase or decrease 
their bid while the auction is live). Describe a database supporting the following operations, as-
suming n is the number of bidders in the database at the time of the operation. For each operation, 
state whether your running time is worst-case, expected, and/or amortized. 

new bid(d, b) record a new bidder ID d with bid b in O(log n) time 
update bid(d, b) update the bid of existing bidder ID d to bid b in O(log n) time 
get revenue() return revenue from selling to the current k highest bidders in O(1) time 

Solution: First, observe that operation update bid requires finding and modifying the bid of a 
bidder given their ID, so maintain a dictionary containing the bidders keyed by bidder ID (call it 
the bidder dictionary). Either a hash table or Set AVL tree will work for this purpose, where using 
a hash table will yield amortized expected running times for the first two operations. 

We will also need to keep track of an ordering of bids stored: in particular the sum of the k highest 
at any given time. To do this, maintain two priority queues: a min priority queue containing the 
k highest bids, and a max priority queue containing the remaining n − k bids. Because we need 
O(log n) performance on priority queue insertions or deletions, we can use either Set AVL trees 
or binary heaps to implement the priority queues, where using binary heaps will yield amortized 
running times for the first two operations. 

In order to find where each bidder is in the priority queues, we store with each bidder in the bidder 
dictionary a cross-linking pointer to the bidder’s bid in one of the priority queues (i.e., its AVL node 
or index in a binary heap). In what follows, we will assume a Set AVL tree is used to implement 
the bidder dictionary and the priority queues. In addition, maintain the sum B of all bids in the 
min priority queue so that we can return it in constant time. 

To implement new bid(d, b), remove the smallest bid b0 with bidder ID d0 from the min priority 
queue in O(log n) time, and decrease B by its bid amount b0 . Then compare b to b0 . Whichever is 
larger is among the k highest bidders seen so far while the other is not, so insert the larger into the 
min priority queue in O(log n) time while increasing B by its bid; and insert the smaller into the 
max priority queue, also in O(log n) time. In addition, add d to the bidder dictionary pointing to its 
bid location in a priority queue, and update the pointer associated with bidder d0, each in O(log n) 
time. This procedure maintains the invariants of the data structures presented, and runs in O(log n) 
total time in the worst case. 

To implement update bid(d, b), find existing bidder d’s bid location in the priority queues 
using the bidder dictionary in O(log n) time, and then remove its record from its priority queue, 
also in O(log n) time. If the min priority queue has only k − 1 bids, remove the max from the 
max priority queue and insert it into the min priority queue in O(log n) time. While doing this, 
recompute B in O(1) time and update the cross-linked pointers in O(log n) time. Now that the 
bidder with ID d has been removed, we can now reinsert it as a new bidder with updated bid b and 
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insert using new bid as above. This operation performs a constant number of calls to O(log n) 
time operations, so this operation runs in worst-case O(log n) time. 

To implement get revenue(), simply return the stored value of B in worst-case O(1) time. 

Problem 4-4. Receiver Roster 

Coach Bell E. Check is trying to figure out which of her football receivers to put in her starting 
lineup. In each game, Coach Bell wants to start the receivers who have the highest performance 
(the average number of points made in the games they have played), but has been having trouble 
because her data is incomplete, though interns do often add or correct data from old and new 
games. Each receiver is identified with a unique positive integer jersey number, and each game 
is identified with a unique integer time. Describe a database supporting the following operations, 
each in worst-case O(log n) time, where n is the number of games in the database at the time of 
the operation. Assume that n is always larger than the number of receivers on the team. 
record(g, r, p) record p points for jersey r in game g 
clear(g, r) remove any record that jersey r played in game g 
ranked receiver(k) return the jersey with the kth highest performance 

Solution: First, observe that operations require finding and modifying records for a receiver given 
a jersey number in O(log n) time, so maintain dictionary containing the receivers keyed by unique 
jersey (call it the jersey dictionary). Since we need to achieve worst-case O(log n) running time, 
we cannot afford the expected performance of a hash table, so we implement the dictionary using 
a Set AVL tree. 

For each receiver, we will need to find and update their games by game ID, so for each receiver 
in the jersey dictionary, we will maintain a pointer to their own Set AVL tree containing that 
receiver’s games keyed by game ID (call this a receiver’s game dictionary). With each receiver’s 
game dictionary, we will maintain the number of games they’ve played and the total number of 
points they’ve scored to date. We can compare the performance of two jerseys from their respective 
number of games and points via cross multiplication. 

Lastly, to find the kth highest performing receiver, we maintain a separate Set AVL tree on the 
receivers keyed by performance, augmenting each node with the size of its subtree (call this the 
performance tree). We showed in lecture how to maintain subtree size in O(1) time, so we can 
maintain this augmentation. Each node of the jersey dictionary will store a cross-linking pointer to 
the node in the performance tree corresponding to that player. Since we use Set AVL trees for all 
data structures, Set operations run in worst-case O(log n) time. 

To implement record(g, r, p), find player r’s game dictionary D in the receiver dictionary 
in O(log n) time. If game g is in D, update its stored points to p in O(log n) time and update the 
total number of points stored with r’s game dictionary in O(1) time. Otherwise, insert the record 
of game g into D in O(log n) time, and update the number of games and total points stored in 
O(1) time. The performance of r may have changed, so find the node corresponding to r in the 
performance tree, remove the receiver’s performance from the tree, update its performance, and 
then reinsert into the tree all in O(log n) time. This operation maintains the semantics of our data 
structures in worst-case O(log n) time. 
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To implement clear(g, r), find player r’s game dictionary D in the receiver dictionary as before 
and remove g (assuming it exists). Identically to above, maintain the stored number of games and 
total points, and update the performance tree together in worst-case O(log n) time. 

To implement ranked receiver(k), find the kth highest performance in the performance tree 
by using the subtree size augmentation: if the size of a node’s right subtree is k or larger, recursively 
find in the right subtree; if the size of the node’s right subtree is k − 1, then return the jersey stored 
at the current node; otherwise the size of the node’s right subtree is k0 < k−1, recurse in the node’s 
left subtree to find its subtree’s k0th highest performing player. This recursive algorithm only walks 
down the tree, so it runs in worst-case O(log n) time. 

Problem 4-5. Warming Weather 

Gal Ore is a scientist who studies climate. As part of her research, she often needs to query the 
maximum temperature the earth has observed within a particular date range in history, based on a 
growing set of measurements which she collects and adds to frequently. Assume that temperatures 
and dates are integers representing values at some consistent resolution. Help Gal evaluate such 
range queries efficiently by implementing a database supporting the following operations. 

record temp(t, d) record a measurement of temperature t on date d 
max in range(d1,d2) return max temperature observed between dates d1 and d2 inclusive 

To solve this problem, we will store temperature mesurements in an AVL tree with binary search 
tree symantics keyed by date, where each node A stores a measurement A.item with a date prop-
erty A.item.key and temperature property A.item.temp. 

(a) To help evaluate the desired range query, we will augment each node with: 
A.max temp, the maximum temperature stored in A’s subtree; and both A.min date 
and A.max date, the minimum and maximum dates stored in A’s subtree respec-
tively. Describe a O(1)-time algorithm to compute the value of these augmentations 
on node A, assuming all other nodes in A’s subtree have already been correctly aug-
mented. 
Solution: Each of these augmentations can be computed in O(1) time via the algo-
rithms below: 
Augmentation A.max temp can be computed by taking the max of 
A.item.temp, A.left.max temp, and A.right.max temp (when they exist). 
Augmetation A.min date is A.left.min date if A has a left child, 
and A.item.key otherwise. 
Augmetation A.max date is A.right.max date if A has a right child, 
and A.item.key otherwise. 

(b) A subtree partially overlaps an inclusive date range if the subtree contains at least one 
measurement that is within the range and at least one measurement that is outside the 
range. Given an inclusive date range, prove that for any binary search tree containing 
measurements keyed by dates, there is at most one node in the tree whose left and 
right subtrees both partially overlap the range. 
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Solution: Let’s say that a node branches on a range if both its left and right subtrees 
both partially overlap the range. Then the question asks us to prove that at most one 
node in a binary search tree branches on a given range. First, observe that any node that 
branches is within the range; otherwise the range would not be continuous. Suppose 
for contradiction that two distinct nodes p and q branch on range (d1, d2). Let x be the 
lowest common ancestor of p and q. Since p and q are in range, then x is too since 
x appears between p and q in the traversal order. At least one of p and q is not x, so 
without loss of generality, assume p is not x and that p is in the left subtree of x. Then 
p and x are both in range, but the right subtree of p is between p and x in traversal 
order and contains keys that are not in range, a contradiction. 

(c) Let subtree max in range(A, d1, d2) be the maximum temperature of any 
measurement stored in node A’s subtree with a date between d1 and d2 inclusive (re-
turning None if no measurements exist in the range). Assuming the tree has been 
augmented as in part (a), describe a recursive algorithm to compute the value of 
subtree max in range(A, d1, d2). If h is the height of A’s subtree, your al-
gorithm should run in O(h) time when A partially overlaps the range, and in O(1) time 
otherwise. 
Solution: Given node A and range inclusive (d1, d2), the maximum temperature of 
any measurement stored in A’s subtree is either the temperature at the node itself, or it 
is in A’s left or right subtree. Because we have augmented by the min and max dates 
within each node’s subtree, we can evaluate whether the dates in A: 

1. is disjoint from the range ((A.max date < d1) or (d2 < A.min date)), 
2. fully overlaps the range (d1 <= A.min date and A.max date <= d2), or 
3. otherwise partially overlaps the range, 

in O(1) time via a constant number of comparisons. In case (1), no measurements 
in the subtree are within range, so we can return None in O(1) time. In case (2), 
all measurements in the subtree are within range, so we can return A.max temp in 
O(1) time, which is correct by definition of the augmentation. Lastly, in case (3), 
recursively compute the max temperature in range for each of A’s child subtrees and 
return the max between them and the temperature at A (since the temperature at A 
must be in range). This algorithm takes at most O(h) time. To see this, observe that 
the claim in part (b) ensures that at in all but one case (3) node, a recursive call in 
at least one of its child subtrees will take O(1) time. So the shape of the recursive 
calls will be the union of at most two paths from the root to another node in the tree, 
touching at most O(h) nodes along the way, doing at most O(1) work at each. 

(d) Describe a database to implement operations record temp(t, d) and 
max in range(d1, d2), each in worst-case O(log n) time, where n is the number 
of unique dates of measurements stored in the database at the time of the operation. 
Solution: Store the measurements in a Set AVL tree keyed by date. Augment the tree 
as in part (a), which can be maintained at each node in O(1) time from the augmenta-
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tions of the node’s children, without affecting the running time of the other AVL tree 
operations. 
To implement record temp(t, d), check to see whether date d already exists in 
the tree. If it does, delete the measurement from the tree, and keep whichever of 
the two measurements has higher temperature. Then in either case, insert the new 
measurement into the tree in worst-case O(log n) time. This procedure maintains the 
invariant that the temperature stored at date d is the highest temperature recorded for 
that day. 
To implement max in range(d1, d2), we reduce to part (c) by simply returning 
subtree max in range(T.root, d1, d2), where T.root is the stored root 
node of the tree. This algorithm is correct by (c), and runs in worst-case O(log n) time 
since the height of an Set AVL tree is O(log n). 

(e) Implement your database in the Python class Temperature DB extending the 
Set AVL Tree class provided; you will only need to implement parts (a) and (c) 
from above. 

Solution: 

1 from Set_AVL_Tree import BST_Node, Set_AVL_Tree 
2 

3 class Measurement: 
4 def __init__(self, temp, date): 
5 self.key = date 
6 self.temp = temp 
7 

8 def __str__(self): return "%s,%s" % (self.key, self.temp) 
9 

10 class Temperature_DB_Node(BST_Node): 
11 def subtree_update(A): 
12 super().subtree_update() 
13 A.max_temp = A.item.temp 
14 A.min_date = A.max_date = A.item.key 
15 if A.left: 
16 A.min_date = A.left.min_date 
17 A.max_temp = max(A.max_temp, A.left.max_temp) 
18 if A.right: 
19 A.max_date = A.right.max_date 
20 A.max_temp = max(A.max_temp, A.right.max_temp) 
21 
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def subtree_max_in_range(A, d1, d2): 
if (A.max_date < d1) or (d2 < A.min_date): return None 
if (d1 <= A.min_date) and (A.max_date <= d2): return A.max_temp 
t = None 
if d1 <= A.item.key <= d2: 

t = A.item.temp 
if A.left: 

t_left = A.left.subtree_max_in_range(d1, d2) 
if t_left: 

if t: t = max(t, t_left) 
else: t = t_left 

if A.right: 
t_right = A.right.subtree_max_in_range(d1, d2) 
if t_right: 

if t: t = max(t, t_right) 
else: t = t_right 

return t 

class Temperature_DB(Set_AVL_Tree): 
def __init__(self): 

super().__init__(Temperature_DB_Node) 

def record_temp(self, t, d): 
try: 

m = self.delete(d) 
t = max(t, m.temp) 

except: pass 
self.insert(Measurement(t, d)) 

def max_in_range(self, d1, d2): 
return self.root.subtree_max_in_range(d1, d2) 
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