

Introduction to Algorithms
Massachusetts Institute of Technology 6.006 Spring 2020
Instructors: Erik Demaine, Jason Ku, and Justin Solomon Final

Final
• Do not open this quiz booklet until directed to do so. Read all the instructions on this page.
• When the quiz begins, write your name on the top of every page of this quiz booklet.
• You have 180 minutes to earn a maximum of 180 points. Do not spend too much time on

any one problem. Skim them all first, and attack them in the order that allows you to make
the most progress.

• You are allowed three double-sided letter-sized sheet with your own notes. No calcula-
tors, cell phones, or other programmable or communication devices are permitted.

• Write your solutions in the space provided. Pages will be scanned and separated for grading.
If you need more space, write “Continued on S1” (or S2, S3, S4, S5, S6, S7) and continue
your solution on the referenced scratch page at the end of the exam.

• Do not waste time and paper rederiving facts that we have studied in lecture, recitation, or
problem sets. Simply cite them.

• When writing an algorithm, a clear description in English will suffice. Pseudo-code is not
required. Be sure to argue that your algorithm is correct, and analyze the asymptotic
running time of your algorithm. Even if your algorithm does not meet a requested bound,
you may receive partial credit for inefficient solutions that are correct.

• Pay close attention to the instructions for each problem. Depending on the problem,
partial credit may be awarded for incomplete answers.

Problem Parts Points
1: Information 2 2
2: Decision Problems 10 40
3: Sorting Sorts 2 24
4: Pythagorean Quad 1 14
5: Animal Counting 1 20
6: Limited Connections 1 14
7: On the Street 1 14
8: RGB Graph 1 18
9: Separated Subsets 1 16
10: A Feast for Crowns 1 18
Total 180

Name:

School Email:

2 6.006 Final Name

Problem 1. [2 points] Information (2 parts)

(a) [1 point] Write your name and email address on the cover page.

(b) [1 point] Write your name at the top of each page.

3 6.006 Final Name

Problem 2. [40 points] Decision Problems (10 parts)

For each of the following questions, circle either T (True) or F (False), and briefly justify your
answer in the box provided (a single sentence or picture should be sufficient). Each problem is
worth 4 points: 2 points for your answer and 2 points for your justification. If you leave both
answer and justification blank, you will receive 1 point.

(a) T F 22n ∈ Θ(2n).

� �
(b) T F If T (n) =

4
9 T

3
2 n + n2 and T (1) = Θ(1), then T (n) = O(n2).

(c) T F Performing an O(1) amortized operation n times on an initially empty
data structure takes worst-case O(n) time.

4 6.006 Final Name

(d) T F Given an array A containing n comparable items, sort A using merge sort. While
sorting, each item in A is compared with O(log n) other items of A.

(e) T F Given a binary min-heap storing n items with comparable keys, one can build a
Set AVL Tree containing the same items using O(n) comparisons.

(f) T F Given a directed graph G = (V, E), run breadth-first search from a vertex s ∈ V .
While processing a vertex u, if some v ∈ Adj+(u) has already been processed,
then G contains a directed cycle.

(g) T F Run Bellman-Ford on a weighted graph G = (V, E, w) from a vertex s ∈ V . If
there is a witness v ∈ V , i.e., δ|V |(s, v) < δ|V |−1(s, v), then v is on a negative-
weight cycle of G.

5 6.006 Final Name

(h) T F Floyd–Warshall and Johnson’s Algorithm solve all-pairs shortest paths in the
same asymptotic running time when applied to weighted complete graphs, i.e.,
graphs where every vertex has an edge to every other vertex.

(i) T F If there is an algorithm to solve 0-1 Knapsack in polynomial time, then there is
also an algorithm to solve Subset Sum in polynomial time.

(j) T F Suppose a decision problem A has a pseudopolynomial-time algorithm to solve A.
If P 6= NP, then A is not solvable in polynomial time.

6 6.006 Final Name

Problem 3. [24 points] Sorting Sorts

(a) [12 points] An integer array A is k-even-mixed if there are exactly k even integers
in A, and the odd integers in A appear in sorted order. Given a k-even-mixed array A
containing n distinct integers for k = dn/ lg ne, describe an O(n)-time algorithm to
sort A.

(b) [12 points] Let A be an array of n pairs of positive integers (xi, yi) with xi, yi < n2

for all i ∈ {0, . . . , n − 1}. The power of pair (x, y) is the integer x + ny. Describe an
O(n)-time algorithm to sort the pairs in A increasing by power.

7 6.006 Final Name

Problem 4. [14 points] Pythagorean Quad
√

A Pythagorean Quad consists of four integers (a, b, c, d) such that d = a2 + b2 + c2. Given
an array A containing n distinct positive integers, describe an O(n2)-time algorithm to determine
whether four integers from A form a Pythagorean Quad, where integers from A may appear more
than once in the Quad. State whether your running time is worst-case, expected, and/or amortized.

8 6.006 Final Name

Problem 5. [20 points] Animal Counting
PurpleRock Park is a wildlife reserve, divided into zones, where each zone has a park ranger
who records current sightings of animals of different species over time. Old animal sightings are
periodically removed from the database. A species s is common if current park records contain at
least 100 sightings of species s within any single zone of the park.

Describe a database to store animal sightings, supporting the following four operations, where n
is the number of sightings stored in the database at the time of the operation. State whether your
running times are worst-case, expected, and/or amortized.

initialize() Initialize an empty database in O(1) time
add sighting(s, i) Record a newest sighting of species s in zone i in O(log n) time
remove oldest() Remove the oldest sighting stored in the database in O(log n) time
is common(s) Return whether species s is common based on sightings

that have not yet been removed from the database in O(1) time

9 6.006 Final Name

Problem 6. [14 points] Limited Connections
For any weighted graph G = (V, E, w) and integer k, define Gk to be the graph that results from
removing every edge in G having weight k or larger.

Given a connected undirected weighted graph G = (V, E, w), where every edge has a unique
integer weight, describe an O(|E| log |E|)-time algorithm to determine the largest value of k such
that Gk is not connected.

10 6.006 Final Name

Problem 7. [14 points] On the Street
Friends Dal and Sean want to take a car trip across the country from Yew Nork to Fan Sancrisco
by driving between cities during the day, and staying at a hotel in some city each night. There are
n cities across the country. For each city ci, Dal and Sean have compiled:

• the positive integer expense h(ci) of staying at a hotel in city ci for one night; and

• a list Li of the at most 10 other cities they could drive to in a single day starting from city ci,
along with the positive integer expense g(ci, cj) required to drive directly from ci to cj for
each cj ∈ Li.

Describe an O(nd)-time algorithm to determine whether it is possible for Dal and Sean to drive
from Yew Nork to Fan Sancrisco in at most d days, spending at most b on expenses along the way.

11 6.006 Final Name

Problem 8. [18 points] RGB Graph
Let G = (V, E, w) be a weighted directed graph. Let c : V → {r, g, b} be an assignment of each
vertex v to a color c(v), representing red, green, or blue respectively. For x ∈ {r, g, b},

• let Vx be the set of vertices with color x, i.e., Vx = {v ∈ V | c(v) = x}; and

• let Ex be the set of edges outgoing from vertices in Vx, i.e., Ex = {(u, v) ∈ E | u ∈ Vx}.

Suppose graph G and coloring c have the following properties:

1. Every edge in E either connects two vertices of the same color,
goes from a red vertex to a green vertex, or goes from a green vertex to a blue vertex.

2. |Vr| = |Er| = O(|V |), and edges in Er have identical positive integer weight wr.

3. |Vg| = |Eg| = O(|V |0.99), and edges in Eg have nonnegative integer weights.

4. |Vb| = |Eb| = O(
p
|V |), and edges in Eb can have positive or negative integer weights.

Given G, c, a red vertex s ∈ Vr, and a blue vertex t ∈ Vb, describe an O(|V |)-time algorithm to
compute δ(s, t), the minimum weight of any path from s to t.

12 6.006 Final Name

Problem 9. [16 points] Separated Subsets
For any set S of integers and for any positive integers m and k, an (m, k)-separated subset of S
is any subset S0 ⊆ S such that S 0 sums to m and every pair of distinct integers a, b ∈ S 0 satisfies
|a − b| ≥ k. Given positive integers m and k, and a set S containing n distinct positive integers,
describe an O(n2m)-time algorithm to count the number of (m, k)-separated subsets of S.

(When solving this problem, you may assume that a single machine word is large enough to hold
any integer computed during your algorithm.)

13 6.006 Final Name

Problem 10. [18 points] A Feast for Crowns
Ted Snark is arranging a feast for the Queen of Southeros and her guests, and has been tasked with
seating them along one side of a long banquet table.

• Ted has a list of the 2n guests, where each guest i has a known distinct positive integer fi
denoting the guest’s favor with the Queen.

• Ted must seat the guests respectfully: the Queen must be seated in the center with n guests
on either side so that guests’ favor monotonically decreases away from the Queen, i.e., any
guest seated between a guest i and the Queen must have favor larger than fi.

• Additionally, every guest hates every other guest: for every two guests i, j, Ted knows the
positive integer mutual hatred d(i, j) = d(j, i) between them.

Given Ted’s guest information, describe an O(n3)-time algorithm to determine a respectful seating
order that minimizes the sum of mutual hatred between pairs of guests seated next to each other.
Significant partial credit will be awarded to correct O(n4)-time algorithms.

14 6.006 Final Name

SCRATCH PAPER 1. DO NOT REMOVE FROM THE EXAM.

You can use this paper to write a longer solution if you run out of space, but be sure to write
“Continued on S1” on the problem statement’s page.

15 6.006 Final Name

SCRATCH PAPER 2. DO NOT REMOVE FROM THE EXAM.

You can use this paper to write a longer solution if you run out of space, but be sure to write
“Continued on S2” on the problem statement’s page.

16 6.006 Final Name

SCRATCH PAPER 3. DO NOT REMOVE FROM THE EXAM.

You can use this paper to write a longer solution if you run out of space, but be sure to write
“Continued on S3” on the problem statement’s page.

17 6.006 Final Name

SCRATCH PAPER 4. DO NOT REMOVE FROM THE EXAM.

You can use this paper to write a longer solution if you run out of space, but be sure to write
“Continued on S4” on the problem statement’s page.

18 6.006 Final Name

SCRATCH PAPER 5. DO NOT REMOVE FROM THE EXAM.

You can use this paper to write a longer solution if you run out of space, but be sure to write
“Continued on S5” on the problem statement’s page.

19 6.006 Final Name

SCRATCH PAPER 6. DO NOT REMOVE FROM THE EXAM.

You can use this paper to write a longer solution if you run out of space, but be sure to write
“Continued on S6” on the problem statement’s page.

20 6.006 Final Name

SCRATCH PAPER 7. DO NOT REMOVE FROM THE EXAM.

You can use this paper to write a longer solution if you run out of space, but be sure to write
“Continued on S7” on the problem statement’s page.

MIT OpenCourseWare
https://ocw.mit.edu

6.006 Introduction to Algorithms
Spring 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

https://ocw.mit.edu
https://ocw.mit.edu/terms

	cover.pdf
	Blank Page

