Power Spectral Density (PSD)

1

6.011, Spring 2018 Lec 18

iid signal x[n], uniform in [-0.5,+0.5]

y[.] obtained by passing x[.] through resonant 2nd-order filter H(z), poles at $\pm 0.95e^{j\pi/3}$

Extracting the portion of x(t) in a specified frequency band

Questions (warm-up for Quiz 2!)

WSS process $x[\cdot]$ with

$$C_{xx}[m] = \rho \delta[m-1] + \delta[m] + \rho \delta[m+1]$$
.

What is the largest magnitude ρ can have?

WSS process $x(\cdot)$ with mean μ_x and PSD $S_{xx}(j\omega)$. What is its FSD?

Zero-mean WSS process $x(\cdot)$ with

$$S_{xx}(j\omega) = \frac{1}{1+\omega^2}$$

and let y(t) = Z + x(t), where Z has zero mean, variance σ^2 , and is uncorrelated with $x(\cdot)$. What are μ_y and $S_{yy}(j\omega)$?⁵

CT case: $X_T(j\omega) \leftrightarrow x(t)$ windowed to [-T,T]

Periodogram =
$$\frac{|X_T(j\omega)|^2}{2T}$$

DT case: $X_N(e^{j\Omega}) \leftrightarrow x[n]$ windowed to [-N, N]

Periodogram =
$$\frac{|X_N(e^{j\Omega})|^2}{2N+1}$$

Periodogram averaging (illustrating the Einstein-Wiener-Khinchin theorem)

MIT OpenCourseWare https://ocw.mit.edu

6.011 Signals, Systems and Inference Spring 2018

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.