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The Joint Probability Table 

Given a set of n binary, variables, with values T or F, you can construct a table, of size 2n , 
to keep track of value combinations observed. In the following table, for example, there are 
three binary variables, so there are 23 = 8 rows. 

Dog barks Burglar Raccoon Tally P Selected 

false false false 405 0.405 

false false true 225 0.225 

false true false 0 0.000 

false true true 0 0.000 

true false false 45 0.045 

true false true 225 0.225 

true true false 50 0.050 

true true true 50 0.050 

T F ? T F ? T F ? 1000 1.000 0.000 

Tallying enables you, if you are a frequentest, to construct occurrence frequencies for the 
rows in the table, and you refer to those frequencies as probabilities. Alternatively, if you are 
a subjectivist, you can provide the probabilities by guessing what the frequencies should be. 

Given the table, you can calculate the probability of any combination of rows by adding 
together their probabilities. You can limit your calculations to rows in which some criteria 
is satisfied. For example, the following table shows the probability that there is a raccoon 
present, given that the dog barks. 
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Dog barks Burglar Raccoon Tally P Selected 

false false false 0 0.000 

false false true 0 0.000 

false true false 0 0.000 

false true true 0 0.000 

true false false 45 0.122 

true false true 225 0.608 

true true false 50 0.135 

true true true 50 0.135 

T F ? T F ? T F ? 370 1.000 0.743 

Unfortunately, the size of the table grows exponentially, so often there are too many 
probabilities to extract from frequency data or to estimate subjectively. You have to find 
another way that takes you through the axioms of probability, the definition of conditional 
probability, and the idea of independence. 

The Axioms of Probability 

The axioms of probability make sense intuitively given the capacity to draw Venn diagrams 
filled with a colored-pencil crosshatching. The first axiom states that probabilities are always 
equal to or greater than zero and less than or equal to one: 

0 ≤ P(a) ≤ 1.0 

Another axiom captures the idea that certainty means a probability of one; impossible, 
zero: 

P(F) = 0.0 P(T) = 1.0


Finally, you have an axiom relating the either (∨) to the  both (∧);


P(a ∨ b) =  P(a) +  P(b) − P(a ∧ b)


Conjunction is generally indicated by a comma, rather than ∧:


P(a, b) =  Pa ∧ b 
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The Definition of Conditional Probability 

and the Chain Rule 

Conditional probability is defined thusly: 

P(a|b) ≡ 
P(a, b) 
P(b) 

In English, the probability of a given that b is true equals by definition the probability 

of a and b divided by the probability of b. 

Intuitively, this is the probability of a in the restricted universe where b is true. Again, 
you can help your intuition to engage by deploying a colored pencil. 

Of course you can multiply to get another form of the same definition: 

P(a, b) =  P(a|b)P(b) 

Given the multiplied-out form, note that, by thinking of z as a variable that restricts the 
universe, you have: 

P(a, b, z) =  P(a|b, z)P(b, z) 

But then, you can work on this expression a little more using the multiplied-out form of 
the definition of conditional probability on P(b, z), which yields: 

P(a, b, z) =  P(a|b, z)P(b|z)P(z)


Once you see this pattern, you can generalize to the chain rule:


P(xn), ...P(x1) =  Πi=1P(xi|xi−1, ..., x1) =  P(xn|xn−1, ..., x1)P(xn−1|xn−2, ..., x1) × ... × P(x1)i=n

The Definition of Independence 

The variable a is said, by definition, to be independent of b if: 

P(a|b) =  P(a) 

Thus, independence ensures that the probability of a in the restricted universe where b 

is true is the same as the probability of a in the unrestricted universe. 

Next, you generalize independence to conditional independence, and define a to be in

dependent of b given z: 

P(a|b, z) ≡ P(a|z)


And then, given the definition, it follows that


P(b|a, z) =  P(b|z) and P(a, b, z) =  P(a|z)P(b|z) 
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Inference Nets 

An inference net is a loop-free diagram that provides a convenient way to assert independence 
conditions. They often, but not always, reflect causal pathways: 
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When you draw such a net, you suggest that the influences on a variable all flow through 
the variable’s parents, thus enabling the following to be said: Each variable in an inference 
net is independent of all nondescendant variables, given the variable’s parents. 

Note that the burglar and raccoon each appear with probabilities that do not depend 
on anything else, but the dog barks with differing probabilities depending on whether the 
burglar or the raccoon or both or neither are present. 

The probabilities and conditional probabilities in the diagram are determined using the 
data to provide frequencies for all the possibilities, just as when creating the joint probability 
table. 

Using the inference net, there are far fewer numbers to determine with frequency data 
or to invent subjectively. Here, there are just 10 instead of 25 = 32 numbers to make up. In 

general, if there are n variables, and no variable depends on more than pmax parents, then 

you are talking about n2pmax rather than 2n, a huge, exponential difference. 

Generating a Joint Probability Table 

Is the inference net enough to do calculation? You know that the joint probability table is 
enough, so it follows, via the chain rule, that an inference net is enough, because you can 
generate the rows in the joint probability table from the corresponding inference net. 

To see why, note that, because inference nets have no loops, each inference net must 
have a variable without any descendants. Pick such a variable to be first in an ordering of the 
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variables. Then, delete that variable from the diagram and pick another. There will always 
be one with no still-around descendents until you have constructed a complete ordering. No 
variable in your list can have any descendents to its right; the descendents, by virtue of how 
you constructed the list, are all to the left. 

Next, you use the chain rule to write out the probability of any row in the joint probability 
table in terms of the variables in your inference net, ordered as you have just laid them out. 

For example, you can order the variables in the evolving example by chewing away at 
the variables without still-around descendants, producing, say, C, D, B, T, R. Then, using the 
chain rule, you produce the following equation: 

P(C, D, B, T, R) =  P(C|D, B, T, R)P(D|B, T, R)P(B|T, R)P(T|R)P(R) 

With this ordering, all the conditional dependencies are on non descendants. Then, 
knowing that the variables are independent of all non descendants given their parents, we 
can strike out a lot of the apparent dependencies, leaving only dependencies on parents: 

P(C, D, B, T, R) =  P(C|D)P(D|B, R)P(B)P(T|R)P(R) 

Thus, it is easy to get the probability of any row in the joint probability table; thus, it is 
easy to construct the table; thus, anything you need to infer can be inferred via the inference 
net. 

You need not actually create the full joint probability table, but it is comforting to know 
that you can, in principle. You don want to, in practice, because there are ways of performing 
your inference calculations that are more efficient, especially if your net has at most one path 
from any variable to any other. 

Naive Bayes Inference 

Now, it is time to revisit the definition of conditional probability and take a walk on a path 
that will soon come back to inference nets. By symmetry, note that there are two ways to 
recast P(a, b): 

P(a, b) =P(a|b)P(b)


P(a, b) =P(b|a)P(a)


This leads to the famous Bayes rule:


P(a|b) =  
P(b

P
|a
|b
)P
)
(a) 

Now, suppose you are interested in classifying the cause of some observed evidence. You 
use Bayes rule to turn the probability of a class, ci, given evidence into the probability of the 

evidence given the class, ci: 

P(ci|e) =  
P(e|

P
c
(
i)
e
P
)
(ci) 

Then, if the evidence consists of a variety of independent observations, you can write the 
naive Bayes classifier, so called because the independence assumption is often unjustified: 
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P(ci|e1, ...en) =  
P(e1|ci) × ... × 

P(
P
e)

(en|ci) × P(ci) 

Of course, if you are trying to pick a class from a set of possibilities, the denominator is 
the same for each, so you can just conclude that the most likely class generating the evidence 
is the one producing the biggest numerator. 

Using the naive Bayes classification idea, you can go after many diagnosis problems, 
from medical diagnosis to understanding what is wrong with your car. 

Model selection 

Using the naive Bayes idea, you can also search for the best model given some data. Consider 
again the inference net we have been working with. Suppose a friend complains you have it 
wrong, and the correct model is the one on the right, not the one on the left: 
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No problem. You only need use your data to fill in the probabilities, then think of the 
probabilities of each data element for each classes. Assuming both models are equally likely, 
all you need do, for each class, is multiply out the probabilities, in the manner indicated by 
naive Bayes. The bigger product indicates the winning class. 

Structure search 

Next, you develop a program for perturbing inference nets, construct a search program, 
and look for the structure that is most probable. You should prepare for some work and 
frustration, however, as a simple search is unlikely to work very well. The space is large and 
full of local maxima and the potential to models that overfit. You will need random restart 
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and a way to favor fewer connections over more connections, which you can think of as a 
special case of Occam’s razor. 
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