
      

 

    

 
 
 
 
 

  

         
           

               
        

                     
                 

       

               
       

          
   

 

          
          

               

                 
     

        
      

         
           

         
        

          
        

       
        

   

Homework 3 6.057: Introduction to MATLAB 

Homework 3 

This homework is designed to give you practice writing functions to solve problems. The problems in this 
homework are very common and you will surely encounter similar ones in your research or future 
classes. As before, the names of helpful functions are provided in bold where needed. Homework must 
be submitted before the start of the next class. 

What to turn in: Copy the text from your scripts and paste it into a document. If a question asks you to 
plot or display something to the screen, also include the plot and screen output your code generates. 
Submit either a *.doc(x) or *.pdf file. 

Keep all your code in scripts/functions. If a specific name is not mentioned in the problem statement, 
you can choose your own script names. 

1. Linear system of equations. Solve the following system of equations using \. Compute and 
display the error vector 
3a + 6b + 4c = 1 

a +5b = 2 
7b + 7c = 3 

) 2. Numerical integration. What is the value of: ∫ ��$%⁄&��? Use trapz or quad. Compute and * 

display the difference between your numerical answer and the analytical answer: 
−24�$)⁄& + 9. 

2 3. Computing the inverse. Calculate the inverse of 01 
43 and verify that when you multiply the 3 

original matrix by the inverse, you get the identity matrix (inv). Display the inverse matrix as well 
as the result of the multiplication of the original matrix by its inverse. 

4. Fitting polynomials. Write a script to load the data file 
Polynomial fits to noisy data 

randomData.mat (which contains variables x and y) 0.2 

and fit first, second, third, fourth, and fifth degree 0.15 

0.1 polynomials to it. Plot the data as blue dots on a figure, 
0.05 and plot all five polynomial fits using lines of different 

colors on the same axes. Label the figure appropriately. 0 

-0.05 To get good fits, you’ll have to use the centering and 
-0.1 scaling version of polyfit (the one that returns three 

arguments, see help) and its counterpart in polyval (the -0.15 

one that accepts the centering and scaling parameters). It -0.2
100 110 120 130 140 150 160 170 180 190 200 

should look like this: X 

Y 

Data 
Order 1 
Order 2 
Order 3 
Order 4 
Order 5 
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Homework 3 6.057: Introduction to MATLAB 

5. Hodgkin-Huxley model of the neuron. You will write an ODE file to describe the spiking of a 
neuron, based on the equations developed by Hodgkin and Huxley in 1952 (they received a 
Nobel Prize for this work). The main idea behind the model is that ion channels in the neuron’s 
membrane have voltage-sensitive gates that open or close as the transmembrane voltage 
changes. Once the gates are open, charged ions can flow through them, affecting the 
transmembrane voltage. The equations are nonlinear and coupled, so they must be solved 
numerically. 

a. Download the HH.zip file from the class website and unzip its contents into your 
homework folder. This zip folder contains 6 m-files: alphah.m, alpham.m, 
alphan.m, betah.m, betam.m, betan.m. These functions return the voltage-

dependent opening ( a (V )) and closing ( b (V )) rate constants for the h, m, and n 

gates. 
b. Write an ODE file to return the following derivatives (you don’t need to understand 

what they mean): 

dn 
= (1− n)α n (V ) − nβ n (V ) dt 

dm 
= 1− m)α V V 

dt ( m ( ) − mβ m ( ) 
dh 

= 1− h)αh ( ) − hβh ( )V 
dt ( V 

dV 1 4 = − (GKn (V − EK )+GNam3h V( − ENa )+GL (V − EL )) dt C 
and the following constants ( C is membrane capacitance, G are the conductances and 
E are the reversal potentials of the potassium ( K ), sodium ( Na ), and leak ( L ) 

channels): 
C =1 
GK 

= 36 
= 120 GNa 

GL 
= 0.3 

EK 
= −72 
= 55 ENa 

EL 
= −49.4 

c. Write a script called HH.m which will solve this system of ODEs and plot the 
transmembrane voltage. First, we’ll run the system to steady state. Run the simulation 
for 20ms (the timescale of the equations is ms) with initial values: 
n = 0.5;m = 0.5;h = 0.5;V = −60 (ode45). Store the steady-state value of all 4 

parameters in a vector called ySS. Make a new figure and plot the timecourse of V t( ) 

2 



      

 

              
   

           
           

             
             

                 
             

                 
              

              
               
         

 

 
 

  

 

 
 

 

Homework 3 6.057: Introduction to MATLAB 

to verify that it reaches steady state by the end of the simulation. It should look 
something like this: 
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Approaching Steady State 
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Time (ms) 

d. Next, we’ll explore the trademark feature of the system: the all-or-none action 
potential. Neurons are known to ‘fire’ only when their membrane surpasses a certain 
voltage threshold. To find the threshold of the system, solve the system 10 times, each 
time using ySS as the initial condition (ode45 will take this as an input argument) but 
increasing the initial value of V by 1, 2, … 10 mV from its steady state value. After each 
simulation, check whether the peak voltage surpassed 0mV, and if it did, plot the 
voltage with a red line, but if it didn’t, plot it with a black line. Plot all the membrane 
voltage trajectories on the same figure, like below. We see that if the voltage threshold 
is surpassed, then the neuron ‘fires’ an action potential; otherwise it just returns to the 
steady state value. You can zoom in on your figure to see the threshold value (the 
voltage that separates the red lines from the black lines). 

Threshold Behavior 
60 

40 

20 

0 2 4 6 8 10 12 14 16 18 20 

Tr
an

sm
em

br
an

e 
Vo

lta
ge

 (m
V)

 

0 

-20 

-40 

-60 

-80 

Time (ms) 
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Homework 3 6.057: Introduction to MATLAB 

Optional Problem 

1. Linear regression, in multiple ways. Linear regression is a widely-used class of statistical models 
that attempts to fit a relationship between a scalar dependent variable � and one or more 
independent variables �. Suppose you run an experiment with � independent variables, with 
values � = [�9, … , �<], and as a result you measure a real number �. Repeating this � times, you 
can assemble the following matrices:

�9,9 ⋯ �9,< �9 

� = @ ⋮ ⋱ ⋮ E ; � = @ ⋮ E 
�D,9 ⋯ �D,< �D 

The goal of linear regression is the fit each �I to its corresponding �� = K�I,9, … , �I,<L, by 
finding the appropriate � = [�9, … , �<]O and � that fits the following set of � equations: 

�9 = �9�9,9 + �Q�9,Q + ⋯+ �<�9,< + � = �� ∗ � + � 
⋮ 

�D = �9�D,9 + �Q�D,Q + ⋯+ �<�D,< + � = �� ∗ � + � 

In other words, we would like to model the relationship as follows: 
� = �9�9 + �Q�Q + ⋯+ �<�< + � = � ∗ � + � 

You might be familiar with the case where � = 1: finding the line of best fit. In particular, least-
squares is the most well-known approach. In this exercise we will consider multiple ways to 
perform least squares, each with its own merits, along with some natural generalizations. 

a. Download the file regression.mat 
b. from the class website and load it into your workspace. This will provide you with data 

matrices X (data) and Y (labels,) where in this case they are actually column vectors 
(� = 100, � = 1). 

c. The first thing you should do when you have data is to visualize it! Fortunately, the given 
matrices X and Y are 1-D, so a 2-D scatter plot suffices. Plot the data as black dots. 

d. Examining the plot, the data mostly indicates a linear relationship, with some regional 
outliers. Let’s try fitting a line using least-squares regression. We want to find � and � 
that fits the data well by minimizing the sum-of-squared-errors (hence “least squares”): 

D 

�(�, �) = Y( �I − (�� ∗ � + �) )Q 

IZ9 

Intuitively, if each (�� ∗ � + �) matches closely to �I, then we have found a good fit. 
We will minimize this cost function �(�, �) by numerical optimization, using fminsearch. 
Before we so, it will be more convenient to concatenate � and � into a single parameter 
vector � = [�; �]. Notice that (�� ∗ � + �) = [��, 1] ∗ �. 
Create an augmented data matrix XAug by concatenating a column of ones to X. 

e. Recall how fminsearch is used: We provide it with a function that evaluates, for any �, 
the objective function being optimized (�(�) in this case). Write (in a separate file) a 
function cost = squaredCost(beta, dataAug, labels) that computes 
�(�) using the given augmented data points in dataAug and labels in labels. 

4 



      

 

            
  

             
             

         
          

            
           

           
    

            
               

                
        

       
     

                
            

       
            

             

          
          
            

               
           

           
           
          

       
       

                
                

    
           

                 
           

Homework 3 6.057: Introduction to MATLAB 

Note: Do not use XAug and Y! The function cannot access variables in the workspace; 
they will be passed in through the arguments of squaredCost. 
Optional: Can you do this without using a for-loop? Optimization will be much faster. 

f. Note that our function has three input arguments, however we only wish to minimize 
the cost function with respect to beta, while keeping dataAug and labels as 
parameters which are constant in our minimization. In order to use fminsearch we will 
need to define a new, anonymous function which only has one parameter (beta). This 
function will call our previously declared squaredCost function and pass on our 
workspace variables XAug and Y as parameters. Complete the following command to 
declare the new anonymous function 
squaredCostReduced = @(beta)… 

g. Now call fminsearch by using squaredCostReduced and an initial value. See help 
to find out what the first two arguments should be (they’re the same as introduced in 
lecture). Use zeros for the initial value, noting that it needs have the same size as �. 
Display beta, and compute the cost �(�) using squaredCost (or 
squaredCostReduced) and beta. Verify by plotting the fitted line (with 
coefficients in beta) with the data points. 

h. Since there is only a single independent variable, we can try polyfit on the data as well. 
Call polyfit on X and Y to fit a straight line, and verify that the coefficients returned 
match those from fminsearch (since polyfit does least-squares regression too). 

i. It turns out that there is an analytical solution for least-squares regression, known as the 
normal equations (which you can find by differentiating �(�) and setting equal to zero): 

� = (�O�)$��O� 
Verify that this gives the same set of coefficients (use XAug). 

j. In fact, because we have an over-determined system of linear equations, we can solve 
for � in the same way you did in Q1. Verify your answer. 

k. At this point, you may think that we’ve wasted our time trying to re-invent the wheel. 
Well, not quite! First, notice that polyfit cannot handle more than one independent 
variable. Second, the analytical solutions only work for the beautiful quadratic cost 
function we’ve seen above, the sum-of-squares error. This cost function is motivated by 
a simple probabilistic modeling assumption, that the sampled outputs Y follow the 
linear relationship with added normally-distributed (Gaussian) noise.1 However, this 
noise distribution is unrealistic in many cases, and modifications are needed. 
Looking at the plots you’ve made, you will notice that the fitted line does not fit the 
majority of data well because of a few outliers. It turns out that, instead of using the 
sum-of-squares error, using absolute-deviation error significantly improves robustness 
against outliers (Optional: Why is that? What does the cost function mean?): 

1 Incidentally, Gauss, the “Prince of Mathematics”, is widely credited with developing and advancing the theory behind the 
least-squares method in the 18th century. Along with many other achievements: http://www.gaussfacts.com 

5 
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Homework 3 6.057: Introduction to MATLAB 

D 

�\]^(�, �) = Y ���( �I − (�� ∗ � + �) ) 
IZ9 

Repeats parts (d)-(f), this time writing a different function cost = 

absoluteCost(beta, dataAug, labels). Note that it’s not valid to compare 
the values from the two different cost functions. Plot the data, the least-squares line (in 
blue), and the least-absolute-deviations line (in red) together. 
There’s no analytical solution for this cost function!2 

l. Optional: Investigate what happens when you use other �-norms in the cost function: 
D 

�\]^(�, �) = Y[ ���( �I − (�� ∗ � + �) ) ]< 

IZ9 

The case of � = 1 corresponds to least-absolute-deviations, � = 2 to least-squares. 
Try modifying your loss function to take in � as well so that you only need to write one! 

2. Optional, but highly recommended: Julia Sets. In this problem you will generate quadratic Julia 
Sets. The following description is adapted from Wikipedia at 
http://en.wikipedia.org/wiki/Julia_Sets. For more information about Julia Sets please read the 
entire article there. 

Given two complex numbers, c and z0 , we define the following recursion: 

2 z = z + c n n−1 

This is a dynamical system known as a quadratic map. Given a specific choice of c and z0 , the 

above recursion leads to a sequence of complex numbers , , ! called the orbit of z z z  z0 . 1 2 3 

Depending on the exact choice of cand z0 , a large range of orbit patterns are possible. For a 

given fixed c , most choices of z0 yield orbits that tend towards infinity. (That is, the modulus 

grows without limit as n increases.) For some values of c certain choices of z0 yield orbits zn 
that eventually go into a periodic loop. Finally, some starting values yield orbits that appear to 
dance around the complex plane, apparently at random. (This is an example of chaos.) These 
starting values, , make up the Julia set of the map, denoted J . In this problem, you will z0 c 

write a MATLAB script that visualizes a slightly different set, called the filled-in Julia set (or 
Prisoner Set), denoted , which is the set of all with orbits which do not tend towards Kc z0 
infinity. The "normal" Julia set is the edge of the filled-in Julia set. The figure below Jc 
illustrates a Julia Set for one particular value of c . You will write MATLAB code that can 

2 Another way to deal with outliers is to use weighted least-squares regression, where each data point has a different weight in 
the cost function. Outliers are first detected and given lower weights, i.e., less importance in the optimization. 

6 
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generate such fractals in this problem. 

Im
(z
) 
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Re(z) 

a. It has been shown that if the modulus of zn becomes larger than 2 for some n then it is 

guaranteed that the orbit will tend to infinity. The value of n for which this becomes 
true is called the ‘escape velocity’ of a particular z0 . Write a function that returns the 

escape velocity of a given z0 and c . The function declaration should be: 

n=escapeVelocity(z0,c,N) where N is the maximum allowed escape velocity 
(basically, if the modulus of zn does not exceed 2 for n<N, return N as the escape 

velocity. This will prevent infinite loops). Use abs to calculate the modulus of a complex 
number 

b. To generate the filled in Julia Set, write the following function M=julia(zMax,c,N). 
zMax will be the maximum of the imaginary and complex parts of the various z0 ’s for 

which we will compute escape velocities. c and N are the same as defined above, and M 
is the matrix that contains the escape velocity of various z0 ‘s. 

i. In this function, you first want to make a 500x500 matrix that contains complex 
numbers with real part between –zMax and zMax, and imaginary part 
between –zMax and zMax. Call this matrix Z. Make the imaginary part vary 
along the y axis of this matrix. You can most easily do this by using linspace and 
meshgrid, but you can also do it with a loop. 

ii. For each element of Z, compute the escape velocity (by calling your 
escapeVelocity) and store it in the same location in a matrix M. When 
done, the matrix M should be the same size as Z and contain escape velocities 
with values between 1 and N. 

7 



      

 

          
          

        
             

     

 
       

                
          

 

             
                    

               
     

Homework 3 6.057: Introduction to MATLAB 

iii. Run your julia function with various zMax, c, and N values to generate 
various fractals. To display the fractal nicely, use imagesc to visualize 
atan(0.1*M), (taking the arctangent of M makes the image look nicer; you 
may also want to use axis xy so the y values aren’t flipped). WARNING: this 
function may take a while to run. 

The figure below was created by running: 
M=julia(1,-.297491+i*0.641051,100); and visualizing it as described above. 
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The figure below was generated by running the same c parameter as above, but on a smaller 
range of z values and with a larger N: 
M=julia(.35,-.297491+i*0.641051,250); 
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3. Optional: Solve a Sudoku game. Sudoku is a popular number placement puzzle game. The 
objective of the game is to fill a 9x9 grid with 9 sets of the numbers from 1 to 9, such that each 
number (from 1 to 9) occurs only once every row, column and 3x3 sub-block. Below is an 
example of a Sudoku board before and after solving. 
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,-./0-12%&% 3$'456%7#81-9:;8<-#%8-%=>?@>A%

!"#$%&'(')*+,-.&/'0-&123'4*/'+,-.&/'0%"#523'6$/,7$'8,4%/+'

7#% 8B<C% /L/1;<C/% 0/% 0<II% 01<8/% "% C<.GI/% ="8I"J% H:#;8<-#% 8B"8% 1/;/<E/C% "% +L+% ."81<L% <#G:8%
1/G1/C/#8<#D% "#% <#;-.GI/8/% N:9-2:% D"./% "#9% 1/8:1#C% 8B/% ;-11/;8IF% C-IE/9% J-"19$% ?B/1/% "1/%
C/E/1"I% "GG1-";B/C% H-1% C-IE<#D% C:;B% "% G1-JI/.g% 0/% 0<II% <.GI/./#8% "% C<.GI/% J";281";2<#D%
"ID-1<8B.$%
?B/% ;-#;/G8% -H% J";281";2<#D% <#E-IE/C% D:/CC<#D% "% ;/18"<#% C-I:8<-#% 0B<;B% 9-/C% #-8% E<-I"8/% 8B/%
D"./%1:I/C%"#9%G1-;//9<#D%:#8<I%0/%1/";B%"%G-<#8%0B/1/%0/%;"##-8%C"8<CHF%8B/% 1:I/C$% >8% 8B<C%
G-<#8(%0/%1/E/1C/%-:1%C8/GC%PJ";281";2Q%8-%8B/%I"C8%2#-0#%0-12<#D%C-I:8<-#%"#9%."2/%"%9<HH/1/#8%
;B-<;/%".-#D%8B/%"E"<I"JI/%G-CC<J<I<8</C%:#8<I%8B/%/#8<1/%D"./%<C%C-IE/9$%

"$% W-0#I-"9% 8B/% H<I/% sudoku.mat H1-.% 8B/% ;I"CC% 0/JC<8/% "#9% I-"9% <8% <#8-% F-:1%
0-12CG";/$% [-:% 0<II% #-0% B"E/% "#% /L".GI/% H-1% "#% :#C-IE/9% N:9-2:% J-"19% <#% F-:1%
0-12CG";/%#"./9%unsolvedBoard$%

J$% T1<8/% "% H:#;8<-#% 0<8B% 8B/% 9/;I"1"8<-#% safe = checkSudoku(board, row, 
col, num) 

board <C%"%+L+%."81<L%0B<;B%;-#8"<#C%8B/%N:9-2:%J-"19%8-%;B/;2$% V#H<II/9%J-"19%;/IIC%
"1/%<#9<;"8/9%JF%"%^"^%E"I:/$%
row "#9%col "1/% <#9/L/C% 8-%8B/%;B/;2% <H% 8B/%#:.J/1%num PJ/80//#%*%"#9%+Q% ;"#%J/%
<#C/18/9% 0<8B-:8% ;":C<#D% "% E<-I"8<-#$% <$/$% 9-/C% num "I1/"9F% /L<C8% <#% 8B/% D<E/#% 1-0(%
;-I:.#%-1%&L&%C:J`JI-;2$% ^-8/%8B"8%0/%9-%#-8%#//9%8-%;B/;2%8B/%/#8<1/%J-"19ZC%E"I<9<8F%
P"I8B-:DB% F-:% ;-:I9% 81F% 8-% 9-% C-% "C% G1";8<;/Q% C<#;/% 0/% 0<II% J/% H<II<#D% -:1% J-"19% -#/%
/I/./#8%"8%"%8<./$%
?B/%H:#;8<-#%1/8:1#C%"%I-D<;"I%true -1%false E"I:/%<#%8B/%-:8G:8%safe 9/G/#9<#D%-#%
8B/%-:8;-./%-H%8B/%;B/;2$%
?B/1/% "1/% C/E/1"I% 0"FC% 8-% ";;-.GI<CB% 8B<C% H:#;8<-#"I<8F$% Y-CC<JI/% H:#;8<-#C% F-:%."F%
0"#8%8-%:C/%"1/%."&/(%-40<-$(%0.#$#*$&J(34;J(3++$% ^-8/%8B"8%^"^%E"I:/C%"1/%:#/M:"I%8-%
-#/%"#-8B/1h%
?/C8%F-:1%H:#;8<-#%0<8B%E"1<-:C%<#G:8C%8-%C//%<8%<C%-G/1"8<#D%"C%/LG/;8/9h%
a-1%/L".GI/6%
>> checkSudoku(unsolvedBoard, 3, 1, 1) 
ans = 

1 
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Homework 3 6.057: Introduction to MATLAB 

>> checkSudoku(unsolvedBoard, 3, 1, 5) 
ans = 

0 

c. Write a function with the declaration solvedBoard = solveSudoku(board). 
The input to this function will be an incomplete Sudoku board and the output will be the 
solved board. 
Below are hints and suggestions for steps to help you implement this function: 

i. Find the indices of all the missing values in the table and store them in the 
variable emptyInd (find, isnan) 

ii. Create a variable called ind which will indicate our current location within the 
emptyInd array 

iii. Write a loop that will traverse the emptyInd array. At each location check 
what number can be placed in that location using your function from part (b) 
(Which numbers do you need to check?). If it’s not valid, try a different number, 
if none work, replace it with a NaN, and go back to the previous empty index 
and try a different number than before. (Which loop type would be most 
suitable for this scenario?) (ind2sub, checkSudoku) 

d. Test your function with the given example unsolvedBoard and compare the result 
to the image shown above. 

e. Optional: Write a function displaySudoku(board) for displaying the Sudoku 
game board in a more “human friendly” form. See an example for such a display below. 

>> load sudoku 
>> displaySudoku(unsolvedBoard) 
+=============================+ 
| 5 3  | 7  |  | 
| 6  | 1 9  5 |  | 
|  9  8 |  | 6  |
|=============================|
| 8  | 6  |  3 | 
| 4  | 8  3 |  1 | 
| 7  | 2  |  6 |
|=============================|
|  6  | | 2  8 | 
|   | 4 1  9 |  5 | 
|   | 8  | 7  9 | 
+=============================+ 

>> solvedBoard = solveSudoku(unsolvedBoard); 
>> displaySudoku(solvedBoard) 
+=============================+ 
| 5 3  4 | 6 7  8 | 9 1  2 | 

10 
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| 6 7  2 | 1 9  5 | 3 4  8 | 
| 1 9  8 | 3 4  2 | 5 6  7 |
|=============================|
| 8 5  9 | 7 6  1 | 4 2  3 | 
| 4 2  6 | 8 5  3 | 7 9  1 | 
| 7 1  3 | 9 2  4 | 8 5  6 |
|=============================|
| 9 6  1 | 5 3  7 | 2 8  4 | 
| 2 8  7 | 4 1  9 | 6 3  5 | 
| 3 4  5 | 2 8  6 | 1 7  9 | 
+=============================+ 

11 
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