6.057
Introduction to programming in MATLAB

Lecture 2: Visualization and Programming

Orhan Celiker

IAP 2019

Some things that came up:

e Plotting a straight line
» x = 1:10
» plot(x, 0)

> Not an error, but probably not what you meant

e Use of semicolon — never required if one command per line.
You can also put multiple commands on one line; in this
case, a semicolon is necessary to separate commands:

» x=1:10; y=(x-5)."2; z = x.*y;

Plotting

e Example
» x=linspace(0,4*pi,10);
» y=8in(x);

e Plot values against their index

» plot(y):;
e Usually we want to plot y versus x
» plot(x,Vy):;

What does plot do?

» plot generates dots at each (x,y) pair
and then connects the dots with a line

e To make plot of a function look smoother, evaluate at more points
» x=linspace(0,4*pi,1000);
» plot(x,sin(x));

e X and y vectors must be same size or else you’ll get an error

»

[1 2 3])

> error!!

10 x values:; * /|

os- |
.'l
04 |

[\
02/

-0.2¢
-0.4}
-0.6

-0.8F

1000 x values:

0.2

-0.4-

0.6

-0.8F

02t/

osf |

o4t |

Plot the learning trajectory

e In helloWorld.m, open a new figure (use figure)

e Plot knowledge trajectory using tvec and knowledgeVec
e When plotting, convert tvec to days by using secPerDay

e Zoom in on the plot to verify that
halfTime was calculated correctly

Outline for Lec 2

(1) Functions

User-defined Functions

e Functions look exactly like scripts, but for ONE difference
> Functions must have a function declaration

% C:\MATLAB6p5\work\stats.m
File Edit View Text Debug Breakpoints Web Window Help

D@0 |GAs | B8 BBERAE| sz] =)
1 % stats: computes the average, standard deviation, and range
2 % of a given vector of data
3 | = Help file
4 % [avg,sd,range]=stats (x)
5 % avg — the average ({(arithmetic mean) of x
6 % sd - the standard deviation of x
7 % range - a 2x1 vector containing the min and max values in x
8 % X — a vector of walues
9 function [avg,sd,range]=stats(x}e—— Function declaration
10|-| avg=mean (x); A AN
s sa—sta(x) Outputs Inputs
12|-| range=[min{x); max{x)];

coinToss.m stats.m

stats Ln12 Col24

7

MATLAB version 6.5. Courtesy of The MathWorks, Inc. Used with permission. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

www.mathworks.com/trademarks

User-defined Functions

e Some comments about the function declaration

Inputs

function [x, y, z] = funName(inl, in2)

f

Must have the reserved Function name should
word: function | match m-file name

If more than one output,
must be in brackets

o No need for return: MATLAB 'returns' the variables whose
names match those in the function declaration (though, you
can use return to break and go back to invoking function)

o Variable scope: Any variable created within the function but
not returned disappears after the function stops running
(They're called “local variables”)

o We're familiar with
» zZeros
» size
» length
» sum

e Look at the help file for size by typing

» help size

e The help file describes several ways to invoke the function
> D = SIZE(X)
> [M,N] = SIZE(X)
> [M1,M2,M3,...,MN] = SIZE(X)
> M = SIZE(X,DIM)

e MATLAB functions are generally overloaded
> Can take a variable number of inputs
> Can return a variable number of outputs

e What would the following commands return:
» a=zeros(2,4,8); %n-dimensional matrices are OK
» D=size(a)
» [m,n]=size(a)
» [x,y,z]l=size(a)

» m2=size(a,2)

e You can overload your own functions by having variable
number of input and output arguments (see varargin,
nargin, varargout, nargout)

10

Functions: Exercise

Write a function with the following declaration:
function plotSin(£f1l)

In the function, plot a sine wave with frequency f1, on the
interval [0,2m]: sin(fx)

To get good sampling, use 16 points per period.

o_a[I
0.4 1
02k JJ' \ 1
o \ _
! |
J g |
\\/
1 2 3 4 5 6 7

/

I S R S
= m

(2) Flow Control

e MATLAB uses mostly standard relational operators

> equal ==
> not equal ~=
> greater than >
> less than <
> (greater or equal >=
> less or equal <=
e Logical operators elementwise short-circuit (scalars)
> And & &&
> Or | ||
> Not ~
> Xor xXor
> All true all
> Any true any

e Boolean values: zero is false, nonzero is true
e See for a detailed list of operators
13

14

e Basic flow-control, common to all languages
e MATLAB syntax is somewhat unique

IF ELSE ELSEIF
if cond if cond if cond1

commands commandsl commandsl

end else elseif cond2
commands?2 commands?2

5 \ end else
Sty
en

e No need for parentheses: command blocks are between
reserved words

e Lots of elseif’s? consider using switch

loops: use for a known number of iterations

e MATLAB syntax:
Loop variable

/

/
forn=1:100

commands \
end

Command block

e The loop variable
> Is defined as a vector
> Is a scalar within the command block

> Does not have to have consecutive values (but it's usually
cleaner if they're consecutive)

e The command block
> Anything between the line and the

15

e The while is like a more general for loop:
> No need to know number of iterations

while cond
commands
end

The command block will execute while the conditional
expression is true

e Beware of infinite loops! CTRL+C?!
e You can use break to exit a loop

16

Exercise: Conditionals

Modify your plotsin (£1) function to take two inputs:
plotSin (£1, £2)

If the number of input arguments is 1, execute the plot command
you wrote before. Otherwise, display the line 'Two inputs were
given'

Hint: the number of input arguments is stored in the built-in
variable nargin

17

(3) Line Plots

Can change the line color, marker style, and line style by
adding a string argument

» plot(x,y,'k.-");

color marker line-style

Can plot without connecting the dots by omitting line style
argument

» plot(x,y,’.")

Look at for a full list of colors, markers, and line
styles

19

Playing with the Plot

to select lines
and delete or

change
properUe§<:::

} Figure 2
‘File Edit View Insert Tools Desktop Window Help

DeE&/[MMeaa®ms € 08|lsO

10

=]}

N

T T T T \. : ;
to slide the plot),
to zoom in/out 3round /

7

i

Cut

I/ Copy

o l/ Delete
Color...
b ' Line Width »
<o
2r Marker b dash
v Marker Size » dot
1 15 2 25 3 35 4| properties. .. dash-dot
Show M-code 1 e

to see all plot
tools at once

20

MATLAB version 6.5. Courtesy of The MathWorks, Inc. Used with permission. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

www.mathworks.com/trademarks

Line and Marker Options

Everything on a line can be customized

» plot(x,y,'s--','LineWidth',2,...
"Color', [1 0 O],
'"MarkerEdgeColor', 'k', ...
'"MarkerFaceColor','g',
'"MarkerSize',10)

You can set colors by using

a vector of [R G B] values or 08
a predefined color character 6L
like 'g’, 'k', etc. ol

0.2+

See doc line_props for a full list of |
properties that can be specified o

04}

-0.6F

21 0.8
4

e We have already seen the plot function
» X=-pi:pi/100:pi;
» y=cos(4*x) .*sin(10*x) .*exp(-abs(x));
» plot(x,y,'k-");

e The same syntax applies for semilog and loglog plots

» semilogx(x,y,'k'"); 10°

» semilogy(y,'r.-"');
» loglog(x,vy):;

10"}

1 030 L

e For example:
» x=0:100;
» semilogy(x,exp(x),'k.-");

1010 L

10°

22

3D Line Plots

e We can plot in 3 dimensions just as easily as in 2D
» time=0:0.001:4*pi;
» x=sin(time) ;
» y=cos (time) ;
» z=time;
» plot3(x,y,z,'k', 'LineWidth', 2);
» zlabel ('Time') ;

23

3D Line Plots

e We can plot in 3 dimensions just as easily as in 2D
» time=0:0.001:4*pi;
» X=sin(time) ;
» y=cos (time) ;
» z=time;
» plot3(x,y,z,'k','LineWidth', 2);
» zlabel ('Time') ;
e Use tools on figure to rotate it
e (Can set limits on all 3 axes
» x1lim, ylim, zlim 5

05

24

05

~ 05

~ o5

Built-in axis modes (see doc axis for more modes)

» axlis square
> makes the current axis look like a square box
» axis tight
> fits axes to data
» axis equal
> makes x and y scales the same
» axis xy
> puts the origin in the lower left corner (default for plots)
» axis 1ij
> puts the origin in the upper left corner (default for
matrices/images)

25

Multiple Plots in one Figure

e To have multiple axes in one figure
» subplot(2,3,1)

> makes a figure with 2 rows and 3 columns of axes, and activates
the first axis for plotting

> each axis can have labels, a legend, and a title
» subplot(2,3,4:6)
> activates a range of axes and fuses them into one

e To close existing figures

» close([1 3]1)
> closes figures 1 and 3

» close all
> closes all figures (useful in scripts)

26

e Figures can be pasted into other apps (word, ppt, etc)
e Edit— copy options— figure copy template
> Change font sizes, line properties; presets for word and ppt
e Edit— copy figure to copy figure
e Paste into document of interest

. ; il
_ Figure (=]
| File Edit View Insert Tools Desktop Window Help -) Preferences
Ded& b RAN® € 08 =0
Figure Copy Template Preferences
0.8 Settings for: [PowerPoim] [Res‘tore Defauﬂs] &
Text
06}
[[] change font size
04r
[] Black and white
02 [Bold
ot Lines
B Figure Copy Template [custom wicth:
02t [[] change style
041
Uicontrols and axes
e Show uicontrols
' |:| Keep axes limits and tick spacing
08 1 ’ Apply to Figure ” Restore Figure] Y
-4 3 2 1 0 1 2 3
27 [OK] [Cancel] ’ Apply] [Help]

MATLAB version 6.5. Courtesy of The MathWorks, Inc. Used with permission. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

www.mathworks.com/trademarks

Saving Figures

e Figures can be saved in many formats. The common ones
are:

. Figure 1

v

Save As

Save in: I@WOfk Zl = £5 v

.fig preserves all Shelper SPFLab :
information —HH_files ©PFLab12
DIntroNumSim ©Phys Found '

S Models of the Neuron ©QuantPhys1

L w_|

? ‘\
— | &
hgQame: [unt'rlled fig Save 3
[CET] |
Save as tydes [MATLAB Figure (~fig) Cancel m -
mATLAB Figure (" fig
e~

l Adobe llustrator file {*.ai)
Bitmap file (*.bmp)
EPSfile {"eps) -]
Enhanced metafile {".emf)

JPEG image ("jpa) L
MATLAB Figure (" fig)

L | Paintbrush 24-bit file {*.pcx) _
Portable Bitmap file (*pbm)

Portable Document Fonn_at {*.pdf) b

.bmp uncompressed
image

.eps high-quality
scaleable format —

.pdf compressed
image

28

MATLAB version 6.5. Courtesy of The MathWorks, Inc. Used with permission. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

www.mathworks.com/trademarks

e Modify the plot command in your plotSin function to use
squares as markers and a dashed red line of thickness 2
as the line. Set the marker face color to be black
(properties are LineWidth, MarkerFaceColor)

o If there are 2 inputs, open a new figure with 2 axes, one on
top of the other (not side by side), and plot both
frequencies (subplot)

plotSin(6) plotSin(1l,2)

Y
L e 8 " J 29 a L L - L L L - L J
¥ 0 1 2 3 4 5 8 ¥

(4) Image/Surface Plots

Visualizing matrices

e Any matrix can be visualized as an image

» mat=reshape(1:10000,100,100) ;
» imagesc (mat) ;

» colorbar

imagesc automatically scales the values to span the entire
colormap

Can set limits for the color axis (analogous to x1im, ylim)
» caxis ([3000 7000])

31

Colormaps

e You can change the colormap:

» imagesc (mat) : L
> default map is parula . -
» colormap (gray) 5 %
» colormap (cool) . L
» colormap (hot (256)) N .

e See help hot for a list ,
256) -
e (Can define custom color-map |

» map=zeros (256,3) ; -
» map(:,2)=(0:255) /255;

» colormap (map) ;

[l
0 20 30 40 50 60 70 80 90 100

1 1 1 4
10 20 30 40 50 60 70 80 90 100

10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100

Surface Plots

It is more common to visualize surfaces in 3D

Example: f(x,y)=sin(x)cos(y)

xe[—ﬂ,ﬂ];ye[—ﬂ,ﬂ]

surf puts vertices at specified points in space x,y,z, and
connects all the vertices to make a surface

The vertices can be denoted by matrices X,Y,Z

How can we make these matrices
> built-in function: meshgrid

33

surf

Make the x and y vectors
» X=-pi:0.1l:pi;
» y=-pi:0.1l:pi;

Use meshgrid to make matrices
» [X,Y]=meshgrid(x,y);

To get function values,
evaluate the matrices

» Z =sin(X) .*cos (Y) ; L

Plot the surface
» surf(X,Y,Z)
» surf(x,y,Z2);

0.5 -

*Try typing surf(membrane)

surf Options

faceted

e See help surf for more options
e There are three types of surface shading "

» shading faceted
» shading flat

» shading interp
e You can also change the colormap
» colormap (gray)

interp

contour

e You can make surfaces two-dimensional by usmg contour

» contour(X,Y,Z,

'LineWidth',

> takes same arguments as surf
> color indicates height
> can modify linestyle properties

> can set colormap
» hold on
» mesh(X,Y,Z)

36

2)7

=]
T

0
=
T

Modify plotsin to do the following:
If two inputs are given, evaluate the following function:
Z =sin(fix)+sin(f,»)
y should be just like x, but using f2. (use meshgrid to get
the X and Y matrices)

In the top axis of your subplot, display an image of the Z
matrix. Display the colorbar and use a hot colormap. Set
the axis to xy (imagesc, colormap, colorbar, axis)

In the bottom axis of the subplot, plot the 3-D surface of Z
(surf)

37

D Plots

cL

Exercise

igure

is fl

4) generates th

in (3,

in

plotS

Specialized Plotting Functions

MATLAB has a lot of specialized plotting functions
polar-to make polar plots

» polar(0:0.01:2*pi,cos((0:0.01:2*pi) *2))
bar-to make bar graphs

» bar(1:10,rand(1,10)) ;

quiver-to add velocity vectors to a plot

» [X,Y] =meshgrid(1:10,1:10);

» quiver (X,Y,rand(10) ,rand(10)) ;
stairs-plot piecewise constant functions

» stairs(1:10,rand(1,10));

fill-draws and fills a polygon with specified vertices
» £i11([0 1 0.5],[0 0 11,'r');

see help on these functions for syntax

doc specgraph - for a complete list

39

(5) Efficient codes

is a very important function
> Returns indices of nonzero values
> Can simplify code and help avoid loops

e Basic syntax: index=find(cond)
» x=rand(1,100);
» inds = find(x>0.4 & x<0.6) ;

inds contains the indices at which x has values between 0.4
and 0.6. This is what happens:
x>0.4 returns a vector with 1 where true and 0 where false
Xx<0.6 returns a similar vector
& combines the two vectors using logical operator
find returns the indices of the 1's

41

e Given x= sin(linspace(0,10*pi,100)), how many of the

entries are positive?

count=0;
for n=1:length(x)
if x(n)>0
count=count+1;
end
end

e Avoid loops!

count=Ilength(find(x>0));
Is there a better way?!

length(x) | Loop time | Find time
100 0.01 0
10,000 0.1 0
100,000 0.22 0
1,000,000 1.5 0.04

e Built-in functions will make it faster to write and execute

42

Avoid loops
> This is referred to as vectorization

Vectorized code is more efficient for MATLAB
Use indexing and matrix operations to avoid loops
For instance, to add every two consecutive terms:

43

Avoid loops
> This is referred to as vectorization

Vectorized code is more efficient for MATLAB

Use indexing and matrix operations to avoid loops
For instance, to add every two consecutive terms:
» a=rand(1,100);

» b=zeros(1,100);

» for n=1:100

» if n==

» b(n)=a(n);

» else

» b(n)=a(n-1)+a(n);
» end

» end

> Slow and complicated «

Avoid loops
> This is referred to as vectorization
Vectorized code is more efficient for MATLAB
Use indexing and matrix operations to avoid loops
For instance, to add every two consecutive terms:

» a=rand(1,100); » a=rand(1,100);

» b=zeros(1,100); » b=[0 a(l:end-1)]+a;
» for n=1:100 > Efficient and clean. Can
N if neo also do this using conv
» b(n)=a(n);

» else

» b(n)=a(n-1)+a(n);

» end

» end

> Slow and complicated

Avoid variables growing inside a loop
Re-allocation of memory is time consuming

Preallocate the required memory by initializing the array to
a default value

For example:
» for n=1:100

» res = % Very complex calculation %
» a(n) = res;
» end

> Variable a needs to be resized at every loop iteration

46

Avoid variables growing inside a loop
Re-allocation of memory is time consuming

Preallocate the required memory by initializing the array to
a default value

For example:

» a = zeros(1l, 100);

» for n=1:100

» res = % Very complex calculation %
» a(n) = res;

» end

> Variable a is only assigned new values. No new memory is
allocated

47

(6) Debugging

e When debugging functions, use disp to print messages
» disp('starting loop')
» disp('loop is over')
> disp prints the given string to the command window

e It's also helpful to show variable values

» disp(['loop iteration ' num2str(n)l]):;
> Sometimes it's easier to just remove some semicolons

49

Debugging

e To use the debugger, set breakpoints

Click on — next to line numbers in m-files

Each red dot that appears is a breakpoint

Run the program

The program pauses when it reaches a breakpoint
Use the command window to probe variables

Use the debugging buttons to control debugger

YYYVYVY

% C:\MATLAB6p5\work\coinToss.m

File Edit View Text Debug Breakpoints Web Window Help

D D,., ,' . o R« ; @M/f@? @%Eﬂ@@ Stack: L?ETT&%‘*,XJ @
11 * Toggle Clear all \Stop execution; exit
2 % bﬁ_gépﬁ Beihfllbs“reaaﬁﬁdlﬁﬁgn and displays the output
3 '5 Step to next
4/-| if rand < 0.5 % if random number is less than 0.5 say heads
5/e e—rt=prHER— | WO breakpoints
6|~ 1T greater than 0.5, say tails
7|®] o b EL= o a1, L B8 = L P .
. ~_Where the program is now

50

MATLAB version 6.5. Courtesy of The MathWorks, Inc. Used with permission. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

www.mathworks.com/trademarks

e It can be useful to know how long your code takes to run
> To predict how long a loop will take
> To pinpoint inefficient code

e You can time operations using tic/

» tic

» Mysteryl;

» a=toc;

» Mystery2;

» b=toc;
> tic resets the timer
> Each toc returns the current value in seconds
> Can have multiple tocs per tic

51

Performance Measures

e Example: Sparse matrices
» A=zeros (10000); A(1,3)=10; A(21,5)=pi;
» B=sparse (A) ;
» inv(A); % what happens?

%
» inv(B); % what about now?

o [If system is sparse, can lead to large memory/time savings
» A=zeros (1000); A(1,3)=10; A(21,5)=pi;
» B=sparse (A) ;
» C=rand (1000,1)
» tic; A\C; toc; slow!

%
» tie; B\C; toc; % much faster!

we

52

Performance Measures

e For more complicated programs, use the profiler
» profile on
> Turns on the profiler. Follow this with function calls

» profile viewer
> Displays gui with stats on how long each subfunction took

Profile Summary
Generated 04-Jan-2006 09:53:26
Number of files called: 19

Filename | File Type Calls | Total Time" Time Plot
newplot M-function 1 0.802 s |
gef M-function 1 0.460 s ——
newplot/ObserveAxesiextPlot | M-subfunction | 1 0.291 s —
...matlab/graphics/private/clo M-function 1 0.251 s —
allchild M-function 1 0.100 s a
setdiff M-function 1 0.050 s |

53

MATLAB version 6.5. Courtesy of The MathWorks, Inc. Used with permission. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

www.mathworks.com/trademarks

End of Lecture 2

(1)
(2)
(3)
(4)
(3)
(6)

Functions

Flow Control

Line Plots
Image/Surface Plots
Efficient codes
Debugging

MIT OpenCourseWare
https://ocw.mit.edu

6.057 Introduction to MATLAB
IAP 2019

Forinformation about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/terms
https://ocw.mit.edu

