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Lecture 11: Graphs and Coloring 

1 Graphs 

• Incredibly useful structures in computer science 

• Applications: 

– Scheduling 

– Optimization 

– Communications 

– Design & Analysis of Algorithms 

– Dating apps (Nobel Prize!) 

– Search engine 

1.1 Simple Graphs 

Defnition 1. A (simple) graph G is a pair (V, E), where V is a non-empty set of vertices, 
and E is a set of 2-element subsets of V called edges. 

Note: vertices are sometimes called nodes. 

Example: 
a d f 

c 

b e g 

V = {a, b, c, d, e, f, g}
E = {{a, b}, {a, c}, {b, c}, {c, d}, {c, e}, {d, e}, {d, f}, {e, g}, {f, g}} 

Notation: {u, v} denotes an edge between vertices u and v. We may also write this edge as 
u − v, uv, or (since edges are sets) {v, u}. 

Warning: defnitions difer slightly across sources! 
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• Some defnitions allow E to be a multiset (multiple edges between the same pairs of 
vertices) or contain self-loops (edges with only one vertex). 

• Our defnition precludes such non-simple graphs. 

• Some defnitions allow a graph to have no vertices. 

• We disallow V = ∅ because it is not terribly interesting and must be treated as a 
special case in some theorems we want to prove. 

• We do allow graphs without edges. 

– Example: G = ({a, b, c}, ∅) 
– Non-Example: G = (∅, ∅) 
– Non-Example: G = ({a, b, c}, {{a}}) 

1.2 Adjacency 

Defnition 2. Two vertices u and v are adjacent if they are connected by an edge, i.e. if 
{u, v} ∈ E. 

Example: In the above graph, a is adjacent to c but not f . 

Defnition 3. An edge {u, v} is incident to u and v. 

Defnition 4. An edge {u, v} has endpoints u and v. 

Example: In the above graph, {a, c} is incident to a; a is an endpoint of {a, c}. 

1.3 Graphs as a Useful Abstraction 

Some real-world examples of graphs: 

• Friendship (e.g., on Facebook): edge between a and b if they are friends. 

– Not Twitter followers (since not symmetric); these could be modelled as a directed 
graph, which we’ll discuss after break. 

– But twitter mutuals makes sense as an undirected graph! 

– “Six degrees of separation”: claims any two people can be connected by a path of 
length ≤ 6 in this graph (or one like it). I’m not going to speculate on whether or 
not it’s true, but interesting that it has a direct correspondence with some graph 
theoretic ideas! 

• Scheduling conficts: edge between two classes if some student is taking both, so the 
fnal exams can’t overlap. We’ll see more about this later today! 
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• The brain (a network of neurons) 

• The internet: most network communication links are bidirectional 

– By contrast, hyperlinks are not symmetric in general, would make more sense as 
a directed graph (we’ll see these after break) 

Graphs are a useful abstraction, because they strike a balance between simplicity and 
complexity: 

• Graphs are conceptually simple to describe: just a bunch of objects (vertices) and 
pairwise relationships between them (edges). This means many real-world scenarios 
can be faithfully modelled using graphs. 

• Graphs have a rich mathematical theory, with many powerful theorems, tools, and 
concepts that can then be applied to the graphs and thus to those real-world scenarios. 

1.4 Vertex degree 

Defnition 5. The degree of a vertex v is the number of edges incident to v. 

In friendship graph, it’s the number of friends that person has. 

In example graph above, the degrees are (2, 2, 4, 3, 3, 2, 2). Sometimes called the “degree 
sequence” of the graph. 

Does there exist a graph with degree sequence (2, 2, 1)? (Try it! Doesn’t work.) 

What about (2, 2, 2, 2, 2, 1)? Well, how many edges would it have? 

Lemma 1 (Handshake Lemma). For a graph G = (V, E), we have X 
deg(v) = 2 · |E|. 

v∈V 

Proof. On left, for each vertex, count the number of edges. Since every edge has two end-
points, this counts every edge twice. 

So (2, 2, 2, 2, 2, 1) is impossible, since it would have 11/2 = 5.5 edges. 

Another application: what’s the maximum number of edges in an n-node graph? Each 
vertex has degree at most n − 1, so 2 · |E| ≤ n · (n − 1), i.e., |E| ≤ (n − 1)(n)/2. This is 
achieved by the n-vertex complete graph , Kn, since every node has degree exactly n − 1. 
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1.5 Bipartite Graphs 

For the typical MIT student, how many Harvard friends do they have? How many MIT 
friends does the typical Harvard student have? Which is bigger? Hmm, might need to ask 
around. . . 

H M 

Bill Buzz 

Helen Kenji 

Natalie Lisa 

.Neil . . 

T. S. 

. . . 

Let’s defne a graph: 

• H = set of current Harvard undergrads, M = set of current MIT undergrads (these 
sets are disjoint!), V = H ∪ M 

• E = set of pairs {h, m} where h ∈ H, m ∈ M , and h and m are friends 

Defnition 6. A graph G = (V, E) is bipartite if V can be partitioned into disjoint sets, 
often called L and R, such that every edge has one endpoint in each of L and R. 

Note that the two sets do not have to have the same size! In our example, |H| ≈ 7200, 
and |W | ≈ 4600. How many edges does this example have, i.e., how many Harvard-MIT 
friendships? 

A bipartite version of handshake lemma says that X X 
deg(h) = |E| = deg(m), 

h∈H m∈M 

since each edge has exactly one endpoint in H and exactly one endpoint in M . 

So if AH is the average degree of nodes in H, and AM is the average degree of nodes in 
M , then X1 

AH = deg(h) = |E|/|H|
|H| 

h∈H 

and similarly AM = |E|/|M |, so 

AM /AH = (|E|/|M |)/(|E|/|H|) = |H|/|M | ≈ 7200/4600 ≈ 1.6 
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So the average MIT student has 1.6 times more Harvard friends than the typical Harvard 
student has MIT friends. Don’t need to know |E| or the distribution of these friendships, all 
that matters is the ratio of the number of nodes in the left and right sides of the bipartite 
graph. 

In general, in a bipartite graph G = (V, E) with V partitioned into L and R (and at least 
one edge), 

average degree of nodes in L |R|
= . 

average degree of nodes in R |L| 

1.5.1 Studies About Romantic Partners 

There’s a famous 1994 UChicago study (The Social Organization of Sexuality: sexual prac-
tices in the U.S.). It followed 2500 people over several years, and had a 700 page writeup 
collecting many conclusions and statistics across many subsets of the population. One par-
ticular claim from the study focuses specifcally on opposite-gender pairings among cisgender 
men and women. They asked the men how many female partners they’ve had, and likewise 
asked the women how many male partners they’ve had. They concluded that men have 
≈ 1.74 times as many female partners as women have male partners. A similar 2004 study 
from ABC News (lauded as one of the most scientifc studies ever done on the topic) claimed 
this number to be ≈ 3.33. And yet another study from the National Center for Health (2007) 
concluded it was ≈ 1.75. Other relationships, genders, and identities were also considered 
in other parts of these studies, but I’m focusing on these particular results for one reason: 
they’re clearly incorrect, because of simple graph theory. 

Because this survey question only asks about relations between one man and one woman, 
we’re in exactly the same bipartite scenario as before, with the set M of men on the left, the 
set W of women on the right, and edges representing relationships. Collectively, men and 
women have the same total number of opposite-gender partners, because such a relationship 
includes one of each. 

So if AM and AW are the average degree for men and women respectively, then AM /AW = 
|W |/|M |, which is approximately 157mil/152mil ≈ 1.03 according to 2010 census data. 
Doesn’t seem like a very useful subject for a behavioral study – it has nothing to do with 
behavior, just population counts. Amusingly, an author of the 2007 study reported that 
she knew the results had to be wrong, but it was her duty to report on the data they had 
collected. 

2 Coloring 

• Last section: edges denote afnity between two vertices 

• This time let’s model the opposite: edges denote confict between two vertices 
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2.1 Exam Scheduling 

• Every class needs an exam time 

• Two classes confict if there are many students enrolled in both 

• Conficting classes shouldn’t have exams at the same time 

Example scheduling graph G: 
6.3700 6.2000 

6.1200 6.3000 6.4100 

• As defned so far, this is an easy problem to solve! 

5pm 6.4100 

7pm 6.3700 

9pm 6.3000 

11pm 6.2000 

1am 6.1200 

• Some 6.1200 students might complain... 

• Much better if we can squeeze the exams into fewer time slots (but without creating 
conficts) 

• Well-known problem in graph theory! 

Graph Coloring Problem: Given a graph G = (V, E) and k colors, assign a color to 
each vertex so that no two adjacent vertices share a color. 

Defnition 7. A proper k coloring f of G = (V, E) is a function f : V → C such that 
|C| ≤ k, and for every edge {u, v} ∈ E, f(u) ≠ f(v). In other words, every vertex in V get 
assigned one of the colors in C, where no edge has endpoints assigned the same color. 

Defnition 8. The chromatic number χ(G) of G is the minimum k for which G has a proper 
k-coloring. 
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Example 4-coloring of G: 
6.3700 6.2000 

6.1200 6.3000 6.4100 

This gives an improved schedule: 

5pm 6.4100, 6.3700 

7pm 6.3000 

9pm 6.2000 

11pm 6.1200 

• Still not so great for 6.1200... 

• Can we do better? 

• 3 time slots? 

6.3700 6.2000 

6.1200 6.3000 6.4100 

Now we don’t need 11pm: 

5pm 6.4100, 6.1200 

7pm 6.3000, 6.3700 

9pm 6.2000 

• What about 2 slots? 

• Impossible: 6.3700, 6.2000, 6.1200 all need diferent time slots! 

• G has a proper 3-coloring, but no proper 2-coloring. 

• χ(G) = 3. 
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To emphasize: to prove χ(G) = 3, we had to prove both an upper bound and a lower 
bound: 

• χ(G) ≤ 3 because G can be 3-colored. (We proved this by fnding a 3-coloring.) 

• χ(G) > 2 because G cannot be 2-colored. (We proved this by contradiction.) 

In general, χ(G) is defned as the smallest number of colors needed, so you need to show 
that χ(G) colors are enough, and that fewer colors are insufcient. 

2.2 Applications 

• Map coloring 

– Four-color theorem is difcult to prove 

– Very simple proof that six colors sufce 

• Register allocation 

• Radio tower broadcast frequencies 

• Scheduling 

• Akamai 

2.3 NP-completeness 

• As it turns out, computing the chromatic number of large graphs is very hard. 

• Oddly enough, given a candidate coloring, it is easy to verify whether or not it is a 
proper k-coloring. 

• Best known algorithm to fnd a k-coloring is essentially brute-force search. 

• In fact, even determining whether χ(G) = 3 is hard (3-Coloring problem). 

• 3-Coloring and Graph Coloring are NP-complete. 

– Many well-studied problems are NP-complete 

– Easy to verify a candidate solution 

– No known algorithm to fnd an optimal solution 

– Equivalent to all other NP-complete problems in the sense that an algorithm for 
one solves all of them 

– $1M question: Does such an algorithm exist? 
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2.4 Approximation 

• Graph Coloring is NP-complete, but we still want a solution! 

• Can we fnd a near-optimal solution quickly? 

Basic algorithm: 

1. Order the vertices v1, v2, . . . , vn 

2. Order the colors c1, c2, . . . 

3. For each vertex in order, assign it the smallest legal color 

• Diferent orders give diferent colorings, and even diferent numbers of colors! 

• Both the 3-coloring and the 4 coloring above were generated with this algorithm. 

• Very hard problem to fgure out good orders 

• Basic algorithm uses the greedy paradigm: 

– Pick vertices 

– Assign colors 

– Don’t look back! 

– Greedy algorithms are usually simple 

– Performance can often be analyzed 

Theorem 2. For all d ≥ 0 and for all graphs G, if every vertex in G has degree at most d, 
then for all vertex orders, the Basic algorithm uses at most d + 1 colors for G. 

Example: 

• Scheduling graph has max degree 3 

• Basic algorithm uses at most 4 colors (sometimes fewer) 

2.5 Induction on Graphs 

• As with most theorems in this class, we frst try to prove Theorem 1 by induction. 

• What is IH? 

– Only integer variable is d, so perhaps try P (d) := “For all graphs G, if every 
vertex in G has degree at most d, then for all vertex orders, the Basic algorithm 
uses at most d + 1 colors for G.” 



10 Lecture 11: Graphs and Coloring 

– How to prove P (d) ⇒ P (d + 1)? With great difculty... 

– Try something stronger? Even more disaster... 

• Idea: induction on size of G! 

– First try induction on |V | 
– Next try induction on |E| 
– Then look for alternatives 

Proof of Theorem 1. By induction on |V |: 

• Inductive Hypothesis: P (n) := “For all d and all n-vertex graphs G, if every vertex in 
G has degree at most d, then for all vertex orders, the Basic algorithm uses at most 
d + 1 colors for G.” 

• Base case (n = 1): Then G has 0 edges, so d = 0. The Basic algorithm uses 1 color for 
G. 

• Inductive step: Assume P (n) for purpose of induction. We wish to prove P (n + 1). 
To this end, let G = (V, E) be a graph with vertices v1, v2, . . . , vn+1 and max degree 
d. Notice that when coloring G, the Basic algorithm colors v1, v2, . . . , vn in order, 
without considering vn+1. It therefore produces the same coloring on those vertices as 
if they were the entire graph. Per the inductive hypothesis, the Basic algorithm colors 
v1, v2, . . . , vn with at most d + 1 colors. Now vn+1 has at most d neighbors, which 
collectively must have at most d colors. Therefore at least one of the frst d + 1 colors 
is available to use for vn+1. 

• By induction, ∀n ∈ N.P (n). 

Be warned: when inducting on graphs, it is doubly important to use your “proof outlining” 
skills to identify the proper proof structure (especially in the inductive step) before diving 
into the proof. A very common mistake is to set up a proof of P (n) implies P (n + 1) 
intuitively instead of carefully breaking it down, and this intuition is very often incorrect 
– you’ll see a concrete example of this in recitation, called buildup error. Students often 
feel that induction on graphs is “diferent” or “backwards”, but it’s in fact using the same 
induction principle in the same way as always – it’s the intuition that often gets it backwards. 

The diference comes from the fact that P (n) often starts with “for all graphs with n 
vertices” (or sometimes edges instead of vertices); that “for all” means that when proving 
P (n + 1), you need to prove something about all graphs with n + 1 vertices, which means 
your proof should start with “suppose G is any graph with n + 1 vertices”. (The incorrect 
intuition often starts with a graph with n vertices and then “builds up” to n + 1 vertices, 
hence the name “buildup error”.) 
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2.6 How good/bad is this greedy algorithm? 

• Can we improve this upper bound? I.e. do all graphs with max degree d have a proper 
d-coloring? 

• No: let Kn be the n-vertex graph with all possible edges 

– Called the complete graph on n vertices, or n-clique 

– Kn has max degree n − 1, but χ(Kn) = n 

• Sometimes the upper bound is much higher than the actual number of colors used 

• Let Sk be the graph with a single vertex of degree k and k vertices of degree 1 

– Called the star graph on k + 1 vertices or the complete bipartite graph K1,k 

– Sk has max degree k, but χ(Sk) = 2, and in fact every vertex order causes the 
Basic algorithm to use two colors 

• But there are graphs on which the Basic algorithm can perform terribly... 

• Let Hk,k be the bipartite graph with vertices 1, 2, 3, . . . , 2n, and an edge between ver-
tices i and j if i + j is odd but not equal to 2n + 1 

– Called the crown graph on 2n vertices 

– χ(Hk,k) = 2 

– With vertex order 1, 2n, 2, 2n − 1, 3, 2n − 2, . . ., Basic algorithm uses n colors 
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