6.1200J/18.062J Mathematics for Computer Science Tuesday 19 March, 2024
Massachusetts Institute of Technology, Spring 2024
Z. Abel, B. Chapman, E. Demaine revised Tuesday 198 March, 2024

Lecture 11: Graphs and Coloring

1 Graphs

e Incredibly useful structures in computer science
e Applications:

— Scheduling

— Optimization

— Communications

— Design & Analysis of Algorithms

Dating apps (Nobel Prize!)

— Search engine

1.1 Simple Graphs

Definition 1. A (simple) graph G is a pair (V, E), where V' is a non-empty set of vertices,
and FE is a set of 2-element subsets of V' called edges.

Note: vertices are sometimes called nodes.

Example:
a\ /d /

/C\

b e——F9
V = {CL’b,C,d,e’f,g}
E = {{a,b},{a,c}, {b,c} {c.d}, {c, e}, {d, e}, {d, f}. {e, g} { [ 9}}

Notation: {u,v} denotes an edge between vertices u and v. We may also write this edge as
u — v, uv, or (since edges are sets) {v, u}.

Warning: definitions differ slightly across sources!
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e Some definitions allow E to be a multiset (multiple edges between the same pairs of
vertices) or contain self-loops (edges with only one vertex).

e Our definition precludes such non-simple graphs.
e Some definitions allow a graph to have no vertices.

e We disallow V = () because it is not terribly interesting and must be treated as a
special case in some theorems we want to prove.

e We do allow graphs without edges.

— Example: G = ({a,b,c},0)
— Non-Example: G = (0, ()
— Non-Example: G = ({a,b, c}, {{a}})

1.2 Adjacency

Definition 2. Two vertices u and v are adjacent iff they are connected by an edge, i.e. iff
{u,v} € E.

Example: In the above graph, a is adjacent to ¢ but not f.
Definition 3. An edge {u,v} is incident to u and v.

Definition 4. An edge {u,v} has endpoints u and v.

Example: In the above graph, {a,c} is incident to a; a is an endpoint of {a,c}.

1.3 Graphs as a Useful Abstraction

Some real-world examples of graphs:

e Friendship (e.g., on Facebook): edge between a and b iff they are friends.

— Not Twitter followers (since not symmetric); these could be modelled as a directed
graph, which we’ll discuss after break.

— But twitter mutuals makes sense as an undirected graph!

— “Six degrees of separation”: claims any two people can be connected by a path of
length < 6 in this graph (or one like it). I'm not going to speculate on whether or
not it’s true, but interesting that it has a direct correspondence with some graph
theoretic ideas!

e Scheduling conflicts: edge between two classes iff some student is taking both, so the
final exams can’t overlap. We’ll see more about this later today!
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e The brain (a network of neurons)
e The internet: most network communication links are bidirectional

— By contrast, hyperlinks are not symmetric in general, would make more sense as
a directed graph (we’ll see these after break)

Graphs are a useful abstraction, because they strike a balance between simplicity and
complexity:

e Graphs are conceptually simple to describe: just a bunch of objects (vertices) and
pairwise relationships between them (edges). This means many real-world scenarios
can be faithfully modelled using graphs.

e Graphs have a rich mathematical theory, with many powerful theorems, tools, and
concepts that can then be applied to the graphs and thus to those real-world scenarios.

1.4 Vertex degree

Definition 5. The degree of a vertex v is the number of edges incident to v.

In friendship graph, it’s the number of friends that person has.

In example graph above, the degrees are (2,2,4,3,3,2,2). Sometimes called the “degree
sequence” of the graph.

Does there exist a graph with degree sequence (2,2,1)? (Try it! Doesn’t work.)
What about (2,2,2,2,2,1)? Well, how many edges would it have?

Lemma 1 (Handshake Lemma). For a graph G = (V, E), we have

Zdeg(v) =2-|E|.

Proof. On left, for each vertex, count the number of edges. Since every edge has two end-
points, this counts every edge twice. O

So (2,2,2,2,2,1) is impossible, since it would have 11/2 = 5.5 edges.

Another application: what’s the maximum number of edges in an n-node graph? Each
vertex has degree at most n — 1,80 2+ |E| < n-(n—1), ie, |E| < (n—1)(n)/2. This is
achieved by the n-vertex complete graph, K,, since every node has degree exactly n — 1.
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1.5 Bipartite Graphs

For the typical MIT student, how many Harvard friends do they have? How many MIT
friends does the typical Harvard student have? Which is bigger?” Hmm, might need to ask
around. . .

H M
Bill Buzz
Helen Kenji
Natalie Lisa
Neil
T. S.

Let’s define a graph:

e H = set of current Harvard undergrads, M = set of current MIT undergrads (these
sets are disjoint!), V.= H UM

e I = set of pairs {h,m} where h € H, m € M, and h and m are friends

Definition 6. A graph G = (V, E) is bipartite if V' can be partitioned into disjoint sets,
often called L and R, such that every edge has one endpoint in each of L and R.

Note that the two sets do not have to have the same size! In our example, |H| ~ 7200,
and |[W| ~ 4600. How many edges does this example have, i.e., how many Harvard-MIT
friendships?

A bipartite version of handshake lemma says that

S deg(h) = | = 3 deg(m),

heH meM

since each edge has exactly one endpoint in H and exactly one endpoint in M.

So if Ay is the average degree of nodes in H, and A, is the average degree of nodes in
M, then

1
Apg = m Zdeg(h} = |E|/|H]

heH
and similarly Ay, = |E|/|M], so

Au/Au = (1E|/IM])/(|E|/|H]) = |H|/|M] ~ 7200/4600 ~ 1.6
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So the average MIT student has 1.6 times more Harvard friends than the typical Harvard
student has MIT friends. Don’t need to know |E| or the distribution of these friendships, all
that matters is the ratio of the number of nodes in the left and right sides of the bipartite
graph.

In general, in a bipartite graph G = (V, E') with V' partitioned into L and R (and at least
one edge),
average degree of nodes in L [R|

average degree of nodes in R~ |L|’

1.5.1 Studies About Romantic Partners

There’s a famous 1994 UChicago study (The Social Organization of Sexuality: sexual prac-
tices in the U.S.). Tt followed 2500 people over several years, and had a 700 page writeup
collecting many conclusions and statistics across many subsets of the population. One par-
ticular claim from the study focuses specifically on opposite-gender pairings among cisgender
men and women. They asked the men how many female partners they’'ve had, and likewise
asked the women how many male partners they’ve had. They concluded that men have
~ 1.74 times as many female partners as women have male partners. A similar 2004 study
from ABC News (lauded as one of the most scientific studies ever done on the topic) claimed
this number to be ~ 3.33. And yet another study from the National Center for Health (2007)
concluded it was =~ 1.75. Other relationships, genders, and identities were also considered
in other parts of these studies, but I'm focusing on these particular results for one reason:
they’re clearly incorrect, because of simple graph theory.

Because this survey question only asks about relations between one man and one woman,
we're in exactly the same bipartite scenario as before, with the set M of men on the left, the
set W of women on the right, and edges representing relationships. Collectively, men and
women have the same total number of opposite-gender partners, because such a relationship
includes one of each.

So if Ay and Ay are the average degree for men and women respectively, then Ay, /Ay =
|W|/|M|, which is approximately 157mil/152mil &~ 1.03 according to 2010 census data.
Doesn’t seem like a very useful subject for a behavioral study — it has nothing to do with
behavior, just population counts. Amusingly, an author of the 2007 study reported that
she knew the results had to be wrong, but it was her duty to report on the data they had
collected.

2 Coloring

e Last section: edges denote affinity between two vertices

e This time let’s model the opposite: edges denote conflict between two vertices
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2.1 Exam Scheduling
e Every class needs an exam time
e Two classes conflict if there are many students enrolled in both

e Conflicting classes shouldn’t have exams at the same time

Example scheduling graph G:
6.3700 6.2000

o
6.1200 6.3000 6.4100

e As defined so far, this is an easy problem to solve!

5pm 6.4100
Tpm 6.3700
9pm 6.3000
11pm 6.2000
lam 6.1200

e Some 6.1200 students might complain...

e Much better if we can squeeze the exams into fewer time slots (but without creating
conflicts)

e Well-known problem in graph theory!

Graph Coloring Problem: Given a graph G = (V| F) and k colors, assign a color to
each vertex so that no two adjacent vertices share a color.

Definition 7. A proper k coloring f of G = (V,E) is a function f : V — C such that
|C| < k, and for every edge {u,v} € E, f(u) # f(v). In other words, every vertex in V get
assigned one of the colors in C', where no edge has endpoints assigned the same color.

Definition 8. The chromatic number x(G) of G is the minimum k for which G has a proper
k-coloring.
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Example 4-coloring of G:
6.3700 6.2000

o
6.1200 6.3000 6.4100

This gives an improved schedule:
5pm 6.4100, 6.3700

7pm 6.3000

9pm 6.2000

I1pm 6.1200

e Still not so great for 6.1200...
e Can we do better?

e 3 time slots?

6.3700 6.2000

@ o
6.1200 6.3000 6.4100

Now we don’t need 11pm:
Spm 6.4100, 6.1200
7pm 6.3000, 6.3700

9pm 6.2000

e What about 2 slots?
e Impossible: 6.3700, 6.2000, 6.1200 all need different time slots!

e (G has a proper 3-coloring, but no proper 2-coloring.

e x(G)=23.
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To emphasize: to prove x(G) = 3, we had to prove both an upper bound and a lower

bound:

e \(G) < 3 because G can be 3-colored. (We proved this by finding a 3-coloring.)

e X\(G) > 2 because G cannot be 2-colored. (We proved this by contradiction.)

In general, x(G) is defined as the smallest number of colors needed, so you need to show
that x(G) colors are enough, and that fewer colors are insufficient.

2.2 Applications

e Map coloring

— Four-color theorem is difficult to prove

— Very simple proof that six colors suffice
e Register allocation
e Radio tower broadcast frequencies
e Scheduling

e Akamai

2.3 NP-completeness

e As it turns out, computing the chromatic number of large graphs is very hard.

e Oddly enough, given a candidate coloring, it is easy to wverify whether or not it is a
proper k-coloring.

e Best known algorithm to find a k-coloring is essentially brute-force search.
e In fact, even determining whether x(G) = 3 is hard (3-Coloring problem).
e 3-Coloring and Graph Coloring are NP-complete.

— Many well-studied problems are NP-complete
— Easy to verify a candidate solution
— No known algorithm to find an optimal solution

— FEquivalent to all other NP-complete problems in the sense that an algorithm for
one solves all of them

— $1M question: Does such an algorithm exist?
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2.4 Approximation

e Graph Coloring is NP-complete, but we still want a solution!

e Can we find a near-optimal solution quickly?

Basic algorithm:

1. Order the vertices vy, vs, ..., v,
2. Order the colors ¢y, ¢o, . ..

3. For each vertex in order, assign it the smallest legal color

e Different orders give different colorings, and even different numbers of colors!

e Both the 3-coloring and the 4 coloring above were generated with this algorithm.
e Very hard problem to figure out good orders

e Basic algorithm uses the greedy paradigm:

— Pick vertices

— Assign colors

— Don’t look back!

— Greedy algorithms are usually simple

— Performance can often be analyzed

Theorem 2. For all d > 0 and for all graphs G, if every vertex in G has degree at most d,
then for all vertex orders, the Basic algorithm uses at most d + 1 colors for G.

Example:

e Scheduling graph has max degree 3

e Basic algorithm uses at most 4 colors (sometimes fewer)

2.5 Induction on Graphs

e As with most theorems in this class, we first try to prove Theorem 1 by induction.
e What is IH?

— Only integer variable is d, so perhaps try P(d) := “For all graphs G, if every
vertex in GG has degree at most d, then for all vertex orders, the Basic algorithm
uses at most d 4 1 colors for G.”
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— How to prove P(d) = P(d+1)? With great difficulty...

— Try something stronger? Even more disaster...
e Idea: induction on size of G!

— First try induction on |V|
— Next try induction on |E)|

— Then look for alternatives
Proof of Theorem 1. By induction on |V|:

e Inductive Hypothesis: P(n) := “For all d and all n-vertex graphs G, if every vertex in
G has degree at most d, then for all vertex orders, the Basic algorithm uses at most
d + 1 colors for G.”

e Base case (n = 1): Then G has 0 edges, so d = 0. The Basic algorithm uses 1 color for
G.

e Inductive step: Assume P(n) for purpose of induction. We wish to prove P(n + 1).
To this end, let G = (V, E) be a graph with vertices vy, vs, ..., 0,41 and max degree
d. Notice that when coloring G, the Basic algorithm colors vy, vs,...,v, in order,
without considering v,.1. It therefore produces the same coloring on those vertices as
if they were the entire graph. Per the inductive hypothesis, the Basic algorithm colors
V1, Vg, ...,V, with at most d + 1 colors. Now wv,,; has at most d neighbors, which
collectively must have at most d colors. Therefore at least one of the first d + 1 colors
is available to use for v,,;.

e By induction, Vn € N.P(n).
[l

Be warned: when inducting on graphs, it is doubly important to use your “proof outlining”
skills to identify the proper proof structure (especially in the inductive step) before diving
into the proof. A very common mistake is to set up a proof of P(n) IMPLIES P(n + 1)
intuitively instead of carefully breaking it down, and this intuition is very often incorrect
— you’ll see a concrete example of this in recitation, called buildup error. Students often
feel that induction on graphs is “different” or “backwards”, but it’s in fact using the same
induction principle in the same way as always — it’s the intuition that often gets it backwards.

The difference comes from the fact that P(n) often starts with “for all graphs with n
vertices” (or sometimes edges instead of vertices); that “for all” means that when proving
P(n + 1), you need to prove something about all graphs with n + 1 vertices, which means
your proof should start with “suppose G is any graph with n + 1 vertices”. (The incorrect
intuition often starts with a graph with n vertices and then “builds up” to n + 1 vertices,
hence the name “buildup error”.)
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2.6

How good/bad is this greedy algorithm?

Can we improve this upper bound? L.e. do all graphs with max degree d have a proper
d-coloring?

No: let K,, be the n-vertex graph with all possible edges

— Called the complete graph on n vertices, or n-clique

— K, has max degree n — 1, but x(K,) =n
Sometimes the upper bound is much higher than the actual number of colors used
Let Si be the graph with a single vertex of degree k and k vertices of degree 1

— Called the star graph on k + 1 vertices or the complete bipartite graph K

— Sk has max degree k, but x(Sx) = 2, and in fact every vertex order causes the
Basic algorithm to use two colors

But there are graphs on which the Basic algorithm can perform terribly...

Let Hj be the bipartite graph with vertices 1,2,3,...,2n, and an edge between ver-
tices ¢ and j iff 7 4+ 7 is odd but not equal to 2n + 1

— Called the crown graph on 2n vertices
— X(Hyp) =2

— With vertex order 1,2n,2,2n — 1,3,2n — 2, ..., Basic algorithm uses n colors
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