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Lecture 15: Relations and Counting

Fair warning: lots of terms and definitions today. I'm sorry.

1 Relations

Definition 1. A relation R C A x B consists of
e o domain A (can be any set),
e a codomain B (can be any set),
e and a subset R C A X B of ordered pairs
Generalizes idea of a function from A to B. Some stereotypical examples:

Reveal diagrams:

Students: {Luke, Geralt, Quentin, Willow}. Classes: {Chem, Sports, Lit,6.1200}. Profes-
sors: {Galadriel, Zelda, Eda, Strange}.

Students learning in classes: L C S x C,

L = {(Lu, O), (Lu, Lit), (Ge, O), (Ge, S), (G, Lit), (Q, S), (Q, Lit), (W, Lit)}.

Classes taught by professors: T C C' x P, T = {(C, E), (Sp, St), (Lit,Ga), (6, Z)}.

For notation, we often write a Rb to mean that (a,b) € R, to mimic other infix relations
like a € X, p=gq, s <t, etc. Can also think of R as a predicate, and write R(a,b) to mean
(a,b) € R. When (a,b) € R, we’ll say that a relates to b in R, but be careful because
direction matters. That’s why we’re drawing (a,b) € R as a directed arrow from a € A to
be B.

By the way, binary relation is the same “relation” as in relational databases! 1t’s just
pairs of data. Some pairs are present, some aren’t. (Relational databases might have more
than 2 columns, but we’re focused only on binary relations today.)

Functions are an important example:

Definition 2. A relation R C A X B is a function iff every a € A relates to at most one
b e B. In this case we write R: A — B. “<1 arrow out” of each a € A.

When R is a function, we can write R(a) for that unique element b it relates to, if there is
one.
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Example: T but not L.

Example: f : R — R where f(z) = 1/2?. How does this relate to initial definition?
f € R x R is really a set of pairs:

f=A{ly) eRxR|y=1/a"} = {(z,1/2") |z € R\ {0}}.

There are infinitely many pairs, but that’s fine! Note that f(0) is not defined, but that’s
also fine! Don’t need all inputs to have outputs, as long as no input has multiple outputs.

Definition 3. A relation R C A x B is total if every a € A relates to at least one element
be B: “>1 arrows out” of each a € A.

Often go together: a total function f has ezactly one arrow out of each a € A. So f(a)
definitely exists for all inputs, with no ambiguity.

Example: f(x) = 1/2?% is not total as a function R — R, but it is total if we consider it as
f:A— A where A = R7?. Observe that these have exactly the same set of (z,y) pairs!
Need to know what the domain and codomain are before we can answer these properties.

Similar terms for arrows in:

Definition 4. A relation R C A x B is injective iff every b € B has at most 1 element a
satisfying a Rb. “< 1 arrow in” to every b € B.

R is surjective iff every b € B has at least 1 element a satisfying a Rb. “> 1 arrow in” to
every b € B.

These properties are useful for comparing the sizes of sets:
Theorem 1. If A and B are finite sets, and R C A X B is a total injection, then |A| < |B|.

Every a € A has at least one arrow coming out, and every B has at most one arrow coming
in, so |A| < # edges < |B|. Similarly:

Theorem 2. If A and B are finite sets, and R C A X B is a surjective function, then
Al > [B.

By our powers combined,

Definition 5. A total function that is both injective and surjective is known as a
biyection.

Theorem 3. If A and B are finite sets, and R C A X B is a bijection, then |A| = |B).

We'll get a lot of mileage out of that in a bit.

2 Relations on a Single Set

We never said A and B have to be disjoint, or even distinct! Many useful examples come
from the case where A = B. A relation R C A x A is known as a binary relation on A.
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Now, the defn is literally identical to the defn of directed graph. a R b means the graph
has directed edge (a,b). So all of our digraph examples apply. Another exaple I like is
the digraph of who likes whom—not necessarily romantically, just as a person. Lots of fun
chaotic structure. E.g., not symmetric: if I like you, you don’t necessarily like me (especially
when there’s a tough pset!). Sometimes I don’t even like myself, so my note wouldn’t have
a self-loop that day! Not in a cry-for-help kind of way, but occasionally we can be a little
down on ourselves, and that’s ok! (If it happens too often, though, please seek help and
support.)

Funny story, I gave this same example a few years ago, and then someone posted it without
context on MIT Confessions! Over the next few days I had Facebook friends messaging me,
“Zach are you ok? We haven’t caught up in a while, but I'm here to listen, and I'd love to
catch up!”. I felt very loved :)

Anyway, back to relations. There are many familiar examples that we don’t necessarily think
of as graphs: a =b, a=bmod 10, a < b, AC B, a|b.

If G is a digraph, we looked at its walk relation aka reachability relation G*, where
a G* b iff there exists a walk from a to b. Also the strong connectivity relation S, where
aSbiff a G* bAND D G* a. Careful: we can think of these relations as digraphs in their own
right, and these relations-as-graphs are in general different from the graph G they’re defined
from.

Let’s look at two common, useful kinds:

2.1 Equivalence Relations

w__»

Want to capture what it means to behave like “=", to represent “sameness” or “equivalence”.
We've seen multiple examples: a = b mod 10 means they have the same remainder. a is
connected to b in a simple graph means a and b belong to the same connected component.

Turns out, this is captured by three properties:

Definition 6. Let R C A x A be a relation on A.

R is reflexive means a R a for all a € A. “Fverything is equivalent to itself.”
R is symmetric means a ROIFF b R a for all a,b € A. “Order doesn’t matter.”

R is transitive means a R b AND b R ¢ IMPLIES a R ¢ for all a,b,c € A. “If a and b are
equivalent, and b and c are equivalent, then a and ¢ are equivalent.”

R is a equivalence relation means that R is reflexive, symmetric, and transitive.

Theorem 4. If R is an equivalence relation on A, then R partitions A into subsets called
equivalence classes, where each a € A belongs to exactly one equivalence class, and a R b
18 true precisely when a and b belong to the same equivalence class.

Skipping the proof, but the result is important. Just these three rules are enough!
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2.2 Weak Partial Orders

Want to capture what it means to behave like “<”, to represent “ordering”. We know
multiple other examples: A C B, a | b, “a is a prerequisite for b” ie reachability in a DAG.

Two properties are the same: reflexive and transitive. a < a is true, and a < b AND b <
¢ IMPLIES a < ¢ are both true, so we want to keep these. Only symmetry needs changing:

Definition 7. Let R C A x A be a relation on A.

R is antisymmetric means that for all a,b € A, if a Rb and b Ra are both true, then a = b.
“can’t be both greater and less, unless you’re exactly the same.”

R is a weak partial order means that R is reflexive, antisymmetric, and transitive.
Theorem 5. If G is a digraph, then the walk relation on G is a WPO iff G is a DAG.

Notice that these examples are a bit more permissive: they don’t require that every pair of
items be ordered, e.g., Left-Sock and Right-Sock can go in either order. But the ones that
do have definite orderings, need to behave like we would expect. If we need every pair to
have a definite ordering, we get:

Definition 8. For a WPO R C A x A, two elements a,b are called comparable when a Rb
orbRa.

A WPO is called a linear ordering aka total ordering if every pair of elements are
comparable. (This is just putting all items in order left to right.)

a < b is a total ordering, but a | b and A C B are not.

3 Counting

Counting! Not 1,2,3,..., but as in finding the size of sets. How many shuffled decks of cards
are there? Answer: 52!. How many trees are there with nodes {1,2,...,n}? Surprising
answer: n"" 2.

Useful when analyzing algorithms; can often use counting techniques to prove runtime
bounds. Useful for probability, coming after Quiz 2.

3.1 Parable of the Two Shepherds

First shepherd doesn’t know how to count. Lets sheep out of their pen every morning,
returns them every evening. How do they know all the sheep came back? Put a pebble in
pocket every time you let one out. Remove a pebble every time you let one in. Sets up a
bijection between sheep and pebbles, and that guarantees there are the same number of
each. This is the key takeaway: we’ll usually be counting with bijections.

Second shepherd knows how to count, but has an overeager apprentice. Apprentice says
“Master, I got all 40 sheep back in their pen!”. Master looks confused: “But my young



Lecture 15: Relations and Counting 5)

apprentice, we only have 37 sheep!” Apprentice: “That’s OK, I rounded them up.” What’s
the moral? Nothing, I just liked the pun.

3.2 Product Rule
For finite sets A, B, we have |A x B| = |A]| - |B|. Works more generally:

|A1><...><An’:|A1| ..... |An|

Example: The number of binary sequences of length n is 2. This set is exactly B, :=
{0,1} x --- x{0,1} = {0, 1}" (new notation!), so its size is 2- - -- - 2 = 2™,

3.3 Bijection Rule
If there is a bijection between A and B, then |A| = |B|.
Example: the number of subsets of {1,2,...,n} is 2",

P, :={A]| AC{1,2,...,n}}. We can give a bijection from P, to B,: A € P, maps to
the n-bit string where the ith bit is 1 if i € A, and 0 if i ¢ A. E.g., {1,2,5} maps to
11001000 - - - 0.

Can verify that this is a bijection, so |P,| = |B,| = 2"

3.4 Sum Rule

Sum rule: if Ay,..., A, are pairwise disjoint finite sets, then

Ay U UA,| = [A1] + -+ |Aa]

Example: how many passwords have length between 6 and 8, start with a capital letter, and
the rest of the characters are capital letters, lowercase letters, or digits?

W is the disjoint union of Wy, Wy, and Wy, where W) counts the number of passwords
with length k satisfying these constraints. By the product rule, Wj, = 26 - 62¥=. So
\W| = [Ws| + |We| + [Ws| = 26 - 62° + 26 - 62° 4 26 - 627 ~ 5.7quadrillion.

For both Sum rule and Product rule, we’re usually making multiple kinds of choices. If it’s
the OR of those choices, use sum rule. If it’s the AND of those choices, use product rule. If
we have 10 shirts and 6 pants, we have 16 articles of clothing because we can choose a shirt
OR a pair of pants. But we have 60 outfits, because we have to choose a shirt AND a pair
of pants.

3.5 Generalized Product Rule

Example first: How many orderings are possible for a shuffled deck of cards? 52 distinct
cards in total.
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We have 52 choices for the first card. Now that that’s selected, we have 51 choices for the
second card. Then 50, then 49, and so on. The answer is 52 - 51 -50---1 = 52! ~ 8 - 10°7.

This wasn’t the product rule: the set of choices for the second card changes depending
on what was chosen for the first card! What’s important is that the number of choices is
consistent, no matter what choices were made earlier.

In general, if A is a set of length k£ sequences (ay,...,ax) where there are n; choices for ay,
there are ny choices for as no matter what value was chosen for a;, there are n3 choices for
az no matter what values were chosen for a; and as, and so on up to ny choices for a; no
matter what values were picked for ay, ..., ax_1, then |[A| =ny - ng---ng.

One more example: US one dollar bills have an 8 digit serial number, and they frequently
have repeated digits! Who has a dollar bill with them? Is some digit used more than once?
The number of serial numbers without repeated digits is 10-9-8---4 -3 by the generalized
product rule. Total number of serials is 10® by the standard product rule. Fraction that
avoids repeats is ~ .018, or 1.8%.

We’ll get tons more practice with these ideas next week.
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