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Lecture 15: Relations and Counting 
Fair warning: lots of terms and defnitions today. I’m sorry. 

1 Relations 

Defnition 1. A relation R ⊆ A × B consists of 

• a domain A (can be any set), 

• a codomain B (can be any set), 

• and a subset R ⊆ A × B of ordered pairs 

Generalizes idea of a function from A to B. Some stereotypical examples: 

Reveal diagrams: 

Students: {Luke, Geralt, Quentin, W illow}. Classes: {Chem, Sports, Lit, 6.1200}. Profes-
sors: {Galadriel, Zelda, Eda, Strange}. 

Students learning in classes: L ⊆ S × C, 

L = {(Lu, C), (Lu, Lit), (Ge, C), (Ge, S), (G, Lit), (Q, S), (Q, Lit), (W, Lit)}. 

Classes taught by professors: T ⊆ C × P , T = {(C, E), (Sp, St), (Lit, Ga), (6, Z)}. 

For notation, we often write aR b to mean that (a, b) ∈ R, to mimic other infx relations 
like a ∈ X, p = q, s ≤ t, etc. Can also think of R as a predicate, and write R(a, b) to mean 
(a, b) ∈ R. When (a, b) ∈ R, we’ll say that a relates to b in R, but be careful because 
direction matters. That’s why we’re drawing (a, b) ∈ R as a directed arrow from a ∈ A to 
b ∈ B. 

By the way, binary relation is the same “relation” as in relational databases! It’s just 
pairs of data. Some pairs are present, some aren’t. (Relational databases might have more 
than 2 columns, but we’re focused only on binary relations today.) 

Functions are an important example: 

Defnition 2. A relation R ⊆ A × B is a function if every a ∈ A relates to at most one 
b ∈ B. In this case we write R : A → B. “≤ 1 arrow out” of each a ∈ A. 

When R is a function, we can write R(a) for that unique element b it relates to, if there is 
one. 
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Example: T but not L. 

Example: f : R → R where f(x) = 1/x2 . How does this relate to initial defnition? 
f ⊆ R × R is really a set of pairs: 

f = {(x, y) ∈ R × R | y = 1/x2} = {(x, 1/x2) | x ∈ R \ {0}}. 

There are infnitely many pairs, but that’s fne! Note that f(0) is not defned, but that’s 
also fne! Don’t need all inputs to have outputs, as long as no input has multiple outputs. 

Defnition 3. A relation R ⊆ A × B is total if every a ∈ A relates to at least one element 
b ∈ B: “≥ 1 arrows out” of each a ∈ A. 

Often go together: a total function f has exactly one arrow out of each a ∈ A. So f(a) 
defnitely exists for all inputs, with no ambiguity. 

Example: f(x) = 1/x2 is not total as a function R → R, but it is total if we consider it as 
=0f : A → A, where A = R ̸ . Observe that these have exactly the same set of (x, y) pairs! 

Need to know what the domain and codomain are before we can answer these properties. 

Similar terms for arrows in: 

Defnition 4. A relation R ⊆ A × B is injective if every b ∈ B has at most 1 element a 
satisfying a R b. “≤ 1 arrow in” to every b ∈ B. 

R is surjective if every b ∈ B has at least 1 element a satisfying a R b. “≥ 1 arrow in” to 
every b ∈ B. 

These properties are useful for comparing the sizes of sets: 

Theorem 1. If A and B are fnite sets, and R ⊆ A × B is a total injection, then |A| ≤ |B|. 

Every a ∈ A has at least one arrow coming out, and every B has at most one arrow coming 
in, so |A| ≤ # edges ≤ |B|. Similarly: 

Theorem 2. If A and B are fnite sets, and R ⊆ A × B is a surjective function, then 
|A| ≥ |B|. 

By our powers combined, 

Defnition 5. A total function that is both injective and surjective is known as a 
bijection. 

Theorem 3. If A and B are fnite sets, and R ⊆ A × B is a bijection, then |A| = |B|. 

We’ll get a lot of mileage out of that in a bit. 

2 Relations on a Single Set 

We never said A and B have to be disjoint, or even distinct! Many useful examples come 
from the case where A = B. A relation R ⊆ A × A is known as a binary relation on A. 
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Now, the defn is literally identical to the defn of directed graph. a R b means the graph 
has directed edge (a, b). So all of our digraph examples apply. Another exaple I like is 
the digraph of who likes whom—not necessarily romantically, just as a person. Lots of fun 
chaotic structure. E.g., not symmetric: if I like you, you don’t necessarily like me (especially 
when there’s a tough pset!). Sometimes I don’t even like myself, so my note wouldn’t have 
a self-loop that day! Not in a cry-for-help kind of way, but occasionally we can be a little 
down on ourselves, and that’s ok! (If it happens too often, though, please seek help and 
support.) 

Funny story, I gave this same example a few years ago, and then someone posted it without 
context on MIT Confessions! Over the next few days I had Facebook friends messaging me, 
“Zach are you ok? We haven’t caught up in a while, but I’m here to listen, and I’d love to 
catch up!”. I felt very loved :) 

Anyway, back to relations. There are many familiar examples that we don’t necessarily think 
of as graphs: a = b, a ≡ b mod 10, a ≤ b, A ⊆ B, a | b. 

If G is a digraph, we looked at its walk relation aka reachability relation G∗ , where 
a G∗ b if there exists a walk from a to b. Also the strong connectivity relation S, where 
a S b if a G∗ b and b G∗ a. Careful: we can think of these relations as digraphs in their own 
right, and these relations-as-graphs are in general diferent from the graph G they’re defned 
from. 

Let’s look at two common, useful kinds: 

2.1 Equivalence Relations 

Want to capture what it means to behave like “=”, to represent “sameness” or “equivalence”. 
We’ve seen multiple examples: a ≡ b mod 10 means they have the same remainder. a is 
connected to b in a simple graph means a and b belong to the same connected component. 

Turns out, this is captured by three properties: 

Defnition 6. Let R ⊆ A × A be a relation on A. 

R is refexive means a R a for all a ∈ A. “Everything is equivalent to itself.” 

R is symmetric means a R b iff b R a for all a, b ∈ A. “Order doesn’t matter.” 

R is transitive means a R b and b R c implies a R c for all a, b, c ∈ A. “If a and b are 
equivalent, and b and c are equivalent, then a and c are equivalent.” 

R is a equivalence relation means that R is refexive, symmetric, and transitive. 

Theorem 4. If R is an equivalence relation on A, then R partitions A into subsets called 
equivalence classes, where each a ∈ A belongs to exactly one equivalence class, and a R b 
is true precisely when a and b belong to the same equivalence class. 

Skipping the proof, but the result is important. Just these three rules are enough! 
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2.2 Weak Partial Orders 

Want to capture what it means to behave like “≤”, to represent “ordering”. We know 
multiple other examples: A ⊆ B, a | b, “a is a prerequisite for b” ie reachability in a DAG. 

Two properties are the same: refexive and transitive. a ≤ a is true, and a ≤ b and b ≤ 
c implies a ≤ c are both true, so we want to keep these. Only symmetry needs changing: 

Defnition 7. Let R ⊆ A × A be a relation on A. 

R is antisymmetric means that for all a, b ∈ A, if aRb and bRa are both true, then a = b. 
“can’t be both greater and less, unless you’re exactly the same.” 

R is a weak partial order means that R is refexive, antisymmetric, and transitive. 

Theorem 5. If G is a digraph, then the walk relation on G is a WPO if G is a DAG. 

Notice that these examples are a bit more permissive: they don’t require that every pair of 
items be ordered, e.g., Left-Sock and Right-Sock can go in either order. But the ones that 
do have defnite orderings, need to behave like we would expect. If we need every pair to 
have a defnite ordering, we get: 

Defnition 8. For a WPO R ⊂ A × A, two elements a, b are called comparable when aR b 
or b R a. 

A WPO is called a linear ordering aka total ordering if every pair of elements are 
comparable. (This is just putting all items in order left to right.) 

a ≤ b is a total ordering, but a | b and A ⊆ B are not. 

3 Counting 

Counting! Not 1,2,3,. . . , but as in fnding the size of sets. How many shufed decks of cards 
are there? Answer: 52!. How many trees are there with nodes {1, 2, . . . , n}? Surprising 

n−2answer: n . 

Useful when analyzing algorithms; can often use counting techniques to prove runtime 
bounds. Useful for probability, coming after Quiz 2. 

3.1 Parable of the Two Shepherds 

First shepherd doesn’t know how to count. Lets sheep out of their pen every morning, 
returns them every evening. How do they know all the sheep came back? Put a pebble in 
pocket every time you let one out. Remove a pebble every time you let one in. Sets up a 
bijection between sheep and pebbles, and that guarantees there are the same number of 
each. This is the key takeaway: we’ll usually be counting with bijections. 

Second shepherd knows how to count, but has an overeager apprentice. Apprentice says 
“Master, I got all 40 sheep back in their pen!”. Master looks confused: “But my young 
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apprentice, we only have 37 sheep!” Apprentice: “That’s OK, I rounded them up.” What’s 
the moral? Nothing, I just liked the pun. 

3.2 Product Rule 

For fnite sets A, B, we have |A × B| = |A| · |B|. Works more generally: 

|A1 × · · · × An| = |A1| · · · · · |An|. 

Example: The number of binary sequences of length n is 2n . This set is exactly Bn := 
{0, 1} × · · · × {0, 1} = {0, 1}n (new notation!), so its size is 2 · · · · · 2 = 2n . 

3.3 Bijection Rule 

If there is a bijection between A and B, then |A| = |B|. 

Example: the number of subsets of {1, 2, . . . , n} is 2n . 

Pn := {A | A ⊆ {1, 2, . . . , n}}. We can give a bijection from Pn to Bn: A ∈ Pn maps to 
the n-bit string where the ith bit is 1 if i ∈ A, and 0 if i ̸∈ A. E.g., {1, 2, 5} maps to 
11001000 · · · 0. 

Can verify that this is a bijection, so |Pn| = |Bn| = 2n . 

3.4 Sum Rule 

Sum rule: if A1, . . . , An are pairwise disjoint fnite sets, then 

|A1 ∪ · · · ∪ An| = |A1| + · · · + |An|. 

Example: how many passwords have length between 6 and 8, start with a capital letter, and 
the rest of the characters are capital letters, lowercase letters, or digits? 

W is the disjoint union of W6, W7, and W8, where Wk counts the number of passwords 
with length k satisfying these constraints. By the product rule, Wk = 26 · 62k−1 . So 
|W | = |W6| + |W7| + |W8| = 26 · 625 + 26 · 626 + 26 · 627 ≈ 5.7quadrillion. 

For both Sum rule and Product rule, we’re usually making multiple kinds of choices. If it’s 
the OR of those choices, use sum rule. If it’s the AND of those choices, use product rule. If 
we have 10 shirts and 6 pants, we have 16 articles of clothing because we can choose a shirt 
OR a pair of pants. But we have 60 outfts, because we have to choose a shirt AND a pair 
of pants. 

3.5 Generalized Product Rule 

Example frst: How many orderings are possible for a shufed deck of cards? 52 distinct 
cards in total. 
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We have 52 choices for the frst card. Now that that’s selected, we have 51 choices for the 
second card. Then 50, then 49, and so on. The answer is 52 · 51 · 50 · · · 1 = 52! ≈ 8 · 1067 . 

This wasn’t the product rule: the set of choices for the second card changes depending 
on what was chosen for the frst card! What’s important is that the number of choices is 
consistent, no matter what choices were made earlier. 

In general, if A is a set of length k sequences (a1, . . . , ak) where there are n1 choices for a1, 
there are n2 choices for a2 no matter what value was chosen for a1, there are n3 choices for 
a3 no matter what values were chosen for a1 and a2, and so on up to nk choices for ak no 
matter what values were picked for a1, . . . , ak−1, then |A| = n1 · n2 · · · nk. 

One more example: US one dollar bills have an 8 digit serial number, and they frequently 
have repeated digits! Who has a dollar bill with them? Is some digit used more than once? 
The number of serial numbers without repeated digits is 10 · 9 · 8 · · · 4 · 3 by the generalized 
product rule. Total number of serials is 108 by the standard product rule. Fraction that 
avoids repeats is ≈ .018, or 1.8%. 

We’ll get tons more practice with these ideas next week. 
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