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Lecture 17: More Counting

(If notation is unfamiliar, see Appendix!)

1 Inclusion/Exclusion

Recall the Sum Rule: |A ∪B| = |A|+ |B| if A,B are disjoint. What if they’re not?!

How many queens and/or hearts are in a standard deck of cards?
4Q + 13♡ = 17 cards? But then Q♡ would be counted twice! Instead: 4 + 13− 1 = 16.

In general, |A∪B| = |A|+ |B|− |A∩B|. Easier to see using a Venn Diagram (draw picture).

Similar formula for 3 sets:

|A ∪B ∪ C| = |A|+ |B|+ |C| − |A ∩B| − |A ∩ C| − |B ∩ C|+ |A ∪B ∪ C|.

Application: Let n = pqr, product of 3 different primes. How many numbers in {1, 2, . . . , n}
are relatively prime to n?

How many aren’t? Let Ap be the set of numbers in {1, 2, . . . , n} that are divisible by p, same
for Aq and Ar. Our answer is n− |Ap ∪ Aq ∪ Ar|.

Inc exc: |Ap| = n/p and same for q, r, |Ap ∩ Aq| = n/(pq) and same for other pairwise
intersections, and |Ap ∩ Aq ∩ Ar| = n/(pqr) = 1. Formula gives

|Ap ∪ Aq ∪ Ar| = |Ap|+ |Aq|+ |Ar| − |Ap ∩ Aq| − |Ap ∩ Ar| − |Aq ∩ Ar|+ |Ap ∩ Aq ∩ Ar|
= n/p+ n/q + n/r − n/(pq)− n/(pr)− n/(qr) + n/(pqr)

= qr + pr + qp− r − q − p+ 1

= pqr − (pqr − qr − pr − qp+ r + q + p− 1)

= n− (p− 1)(q − 1)(r − 1).

so answer is n minus that! Simplifies to (p− 1)(q − 1)(r − 1).
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Even more generally:

|A1 ∪ A2 ∪ · · · ∪ An| =
∑
i

|Ai|

−
∑
i<j

|Ai ∩ Aj|

+
∑
i<j<k

|Ai ∩ Aj ∩ Ak|

· · ·
± |A1 ∩ A2 ∩ · · · ∩ An|.

Add the initial sets, subtract the 2-way intersections, add the 3-way intersections, subtract
4-way intersections, etc., all the way to the n-way intersection.

Can also be expressed as follows:

Theorem 1 (PIE). Let U =
⋃
i∈[n]

Ai be a finite universe of discourse. Then

∑
I⊆[n]

(−1)|I|

∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣ = 0,

where
⋂

∅ = U by convention.

Proof. For x ∈ U , let Ix ⊆ [n] be the set of indices i for which x ∈ Ai. For every I ⊆ Ix,

x ∈
⋂
i∈I

Ai. This means x contributes +1 to the LHS for each such I of even size, and x

contributes −1 to the LHS for each such I of odd size. Ix is non-empty by definition of U ,
so contains some index i. Now symmetric difference with {i} gives a self-inverting bijection
between even-size and odd-size subsets I ⊆ Ix, so x contributes 0 in total to the LHS.

Example: If we take n = 2 and expand out the LHS, this is saying that

I=∅
(−1)0 · |U| +

I={1}
(−1)1 · |A1| +

I={2}
(−1)1 · |A2| +

I={1,2}
(−1)2 · |A1 ∩ A2| = 0.

Example: If we take n = 3 and expand out the LHS, this is saying that

I=∅
|U| −

I={1}
|A1| −

I={2}
|A2| −

I={3}
|A3| +

I={1,2}
|A1 ∩ A2|+

I={1,3}
|A1 ∩ A3|+

I={2,3}
|A2 ∩ A3| −

I={1,2,3}
|A1 ∩ A2 ∩ A3| = 0.

2 Pidgeyhole Principle

Theorem 2 (Pidgeyhole Principle). If |A| > |B|, and f : A → B is a total function, then f
is not injective. In other words, there exist a1, a2 ∈ A such that a1 ̸= a2 and f(a1) = f(a2).

More generally, any total relation R ⊆ A× B is not injective: there must exist at least two
distinct a1, a2 ∈ A that relate to the same b ∈ B.



Lecture 17: More Counting 3

Name comes from medieval times: cubbies for domestic pigeons to rest in. A is pigeons, B
is pigeonholes. If more birds than cubbies, then some pigeons must share.

Example: strictly more than 26 people in the room, so two of us must have names that start
with the same first letter.

Example: n differently colored pairs of socks; how many single socks do I need to pick before
I’m guaranteed to have a matching pair? Pidgeyhole Principle says n + 1 is enough. And
can’t be less, because I might accidentally pick one from each pair. So n + 1 is the exact
answer.

Example: there exist two non-bald Bostonians (≈ 650, 000) with the same number of hairs on
their head (≤ 200, 000). Assuming less than 2/3 of Boston is bald, we have more Bostonians
than possible hair counts, so must be true by Pidgeyhole.

Note: nonconstructive! We know they exist, but we don’t know who! Pidgeyhole Principle
says there must be a collision, but doesn’t give an easy way to actually find the people.

Example: no lossless compression scheme that strictly shortens all n-bit strings. There are
2n bitstrings with length n, but only 2n−1 + 2n−2 + · · · + 21 + 20 = 2n − 1 shorter strings
(including the empty string). Any total function from bigger set to smaller set must have
collisions, so it’s not lossless.

Theorem 3 (Generalized Pidgeyhole Principle). If |A| > k · |B|, then every total rela-
tion/function from A to B must have at least k + 1 elements in A that map to the same
element in B.

With either version, proofs are often short but can sometimes require cleverness! Gotta pick
your pigeons, holes, and/or the map between them carefully; not all choices are useful.

One more example: on an 8× 8 chessboard, we fill 33 of the 64 cells with Rooks. Show we
can find 5 of them that don’t attack each other, i.e., lie in 5 distinct rows and 5 distinct
columns.

Clever idea: Choose 8 pigeonholes, where each one is a subset of 8 cells like this:

2 3 4 5 6 7 8 1
3 4 5 6 7 8 1 2
4 5 6 7 8 1 2 3
5 6 7 8 1 2 3 4
6 7 8 1 2 3 4 5
7 8 1 2 3 4 5 6
8 1 2 3 4 5 6 7
1 2 3 4 5 6 7 8

Label each rook with the number on its cell. There are 8 labels and 33 rooks, so at least 5
of them must have the same label. These 5 are in different rows and columns; done!
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3 Combinatorial Proofs / Double Counting

n∑
k=0

(
n

k

)
= 2n.

Proof. How many subsets of {1, 2, . . . , n} are there?

Idea: For each 0 ≤ k ≤ n there are
(
n
k

)
subsets of size k, so together these should add to the

total number of subsets, 2n.

More precisely: Let S be the set of all subsets of {1, 2, . . . , n}. We will count |S| in two
different ways.

First, |S| = 2n since each element is either in or out.

Let’s instead work by cases, depending on the size of the subsets. Let Sk be the set of subsets
of size k, and note that S0, S1, . . . , Sn form a partition of S: every member of S belongs to
exactly one of the Sk. By the sum rule, this means |S| =

∑n
k=0 |Sk|. But |Sk| =

(
n
k

)
, so we

get 2n = |S| =
∑(

n
k

)
, as claimed.

This is a special case of a useful theorem. We’ve been using binomial coefficients a lot
already; here’s their eponym:

Theorem 4 (Binomial Theorem). For any x, y, and for n ∈ N:

(x+ y)n =
n∑

k=0

(
n

k

)
xkyn−k,

where 00 = 1 by convention.

Proof. Expand (x+ y)n to get a sum of 2n terms of the form a1a2 · · · an, where ai are either

x or y. By commutativity, we can group like terms of the form xkyn−k. There are

(
n

k

)
such

terms; this is the number of ways we can choose k of the n indices i for which ai = x.

Example: If n = 3, we have (x+ y)3 = y3 + 3xy2 + 3x2y + x3.

The coefficient of (x0)y3 is

(
3

0

)
= 1.

The coefficient of xy2 is

(
3

1

)
= 3.

The coefficient of x2y is

(
3

2

)
= 3.

The coefficient of x3(y0) is

(
3

3

)
= 1.

Similarly:
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Theorem 5 (Multinomial Theorem). For any x1, x2, . . . , xm, and for n ∈ N:(
m∑
i=1

xi

)n

=
∑

k1+k2+···+km=n

(
n

k1, k2, . . . , km

) m∏
i=1

xki
i .

As before, 00 = 1 by convention, and the summation is over non-negative integers ki that

sum to n.

(
n

k1, k2, . . . , km

)
is the multinomial coefficient defined by(

n

k1, k2, . . . , km

)
=

n!

k1!k2! · · · km!
.

Another useful identity: (
n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
Could prove this by algebra using factorials, but no intuition! Here’s a combinatorial proof:

Proof. How many subset of {1, 2, . . . , n} have size k? Let S be this set of size-k subsets.
Then |S| =

(
n
k

)
. But let’s count these in a different way. Every size-k subset of {1, 2, . . . , n}

either includes n or doesn’t. Let A be the set of ones that include n, and B the set of ones
that don’t, so S is the disjoint union of A and B.

Note: |B| =
(
n−1
k

)
, because we’re not allowed to use n. Also, |A| =

(
n−1
k−1

)
, because we must

pick n, and then k − 1 other numbers from {1, . . . , n − 1}. So |S| = |A| + |B|, which is
exactly the identity above.

Note: this fact shows that if we put the numbers
(
n
k

)
in a big triangle, each is the sum of the

2 above it. This is Pascal’s Triangle. Above we showed that the sum of row k is 2k, and in
homework you’ll show that the sums of diagonals gives Fibonacci Numbers!

Fun exercise: Find a combinatorial proof that
n∑

k=0

(
n

k

)2

=

(
2n

n

)

Appendix: Notation

Just as
n∑

i=1

xi := x1 + x2 + . . . + xn, we can similarly define n-way products, unions, and

intersections:
n∏

i=1

xi := x1 × x2 × . . .× xn

n⋃
i=1

Si := S1 ∪ S2 ∪ . . . ∪ Sn

n⋂
i=1

Si := S1 ∩ S2 ∩ . . . ∩ Sn
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There are also different notations for indexing:

[n] := N ∩ (0, n] = {1, 2, . . . , n}

∑
i∈[n]

xi is another way to write
n∑

i=1

xi.

More generally, for a finite indexing set S,
∑
x∈S

f(x) means

|S|∑
i=1

f(ϕ(i)), where ϕ : [|S|] → S

is any bijection.

A common abuse of notation is to write
∑
P (x)

f(x) instead of
∑

x∈{y:P (y)}

f(x).

One can even omit the index entirely:
∑

S means
∑
x∈S

x.

All of these notations extend naturally to
∏

,
⋃

,
⋂

.∑
∅ = 0 by convention, because 0 is the identity of +. Basically, it should be true that

m∑
i=1

xi +
n∑

i=m+1

xi =
n∑

i=1

xi. Taking m = 0 tells us
0∑

i=1

xi =
∑

∅ = 0.

Similarly, for
∏

we have
∏

∅ = 1, and
⋃

∅ = ∅, and
⋂

∅ = U , where U is the universe of

discourse, or “everything”.
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