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Lecture 17: More Counting

(If notation is unfamiliar, see Appendix!)

1 Inclusion/Exclusion
Recall the Sum Rule: |[AU B| = |A| + |B] if A, B are disjoint. What if they’re not?!

How many queens and/or hearts are in a standard deck of cards?
4Q + 130 = 17 cards? But then QO would be counted twice! Instead: 4 4+ 13 — 1 = 16.

In general, |[AUB| = |A|+|B|—|AN B|. Easier to see using a Venn Diagram (draw picture).

Similar formula for 3 sets:

JAUBUC| =|A|+ |B|+|C|—|ANnB|—|ANC|—|BnC|+|AUuBUC|.

Application: Let n = pgr, product of 3 different primes. How many numbers in {1,2,...,n}
are relatively prime to n?

How many aren’t? Let A, be the set of numbers in {1,2,...,n} that are divisible by p, same
for A, and A,. Our answer is n — |4, U A, U A,|.

Inc exc: |A,] = n/p and same for ¢,r, |A, N A;] = n/(pg) and same for other pairwise
intersections, and |4, N A, N A,| =n/(pgr) = 1. Formula gives

|APUAqUAr| = |Ap| + |Aq| + ‘Ar| B |ApmAq| B |ApmAr’ - |Aqur’ + |ApmAqur’
=n/p+n/q+n/r—n/(pq) —n/(pr) —n/(qr) +n/(pqgr)
=qr+pr+gqp—r—q—p+1
=pqr — (pqr —qr —pr —qp+r+q+p—1)
=n—(p-1-1)-1).

so answer is n minus that! Simplifies to (p — 1)(¢ — 1)(r — 1).
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Even more generally:
[AjU Ay U U A, =D |A)]
=) " lAin 4]
i<j
+ ) AN AN A
i<j<k
+|ANAN---NA,

Add the initial sets, subtract the 2-way intersections, add the 3-way intersections, subtract
4-way intersections, etc., all the way to the n-way intersection.

Can also be expressed as follows:

Theorem 1 (PIE). Let U = U A; be a finite universe of discourse. Then

i€[n]

> (-

IC[n]

N

i€l

=0,

where ﬂ@ =U by convention.

Proof. For © € U, let I, C [n] be the set of indices ¢ for which z € A;. For every I C I,

T € ﬂAi. This means x contributes +1 to the LHS for each such I of even size, and =z
iel

contributes —1 to the LHS for each such I of odd size. I, is non-empty by definition of U,

so contains some index ¢. Now symmetric difference with {i} gives a self-inverting bijection

between even-size and odd-size subsets I C I, so x contributes 0 in total to the LHS. [

Example: If we take n = 2 and expand out the LHS, this is saying that

=0 ={1} ={2} I={1,2}
(—1)0 . ’U’ + (—1)1 . |A1| + (—1)1 . |A2| + (—1)2 . |A1 ﬂA2| = 0.

Example: If we take n = 3 and expand out the LHS, this is saying that

=9 I={1} I={2} I={3} I={1,2} 1={1,3} I={2,3} 1={1,2,3}
U| — |A1] — |Az| — |As| + |A1 N Ag| + [A1 N As| + |As N A — |[A1 N Ay N Az] = 0.

2 Pidgeyhole Principle

Theorem 2 (Pidgeyhole Principle). If |A| > |B|, and f : A — B is a total function, then f
is not injective. In other words, there erist aj,as € A such that a; # ay and f(a1) = f(az).

More generally, any total relation R C A x B is not injective: there must exist at least two
distinct a1, ay € A that relate to the same b € B.
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Name comes from medieval times: cubbies for domestic pigeons to rest in. A is pigeons, B
is pigeonholes. If more birds than cubbies, then some pigeons must share.

Example: strictly more than 26 people in the room, so two of us must have names that start
with the same first letter.

Example: n differently colored pairs of socks; how many single socks do I need to pick before
I'm guaranteed to have a matching pair? Pidgeyhole Principle says n + 1 is enough. And
can’t be less, because I might accidentally pick one from each pair. So n + 1 is the exact
answer.

Example: there exist two non-bald Bostonians (= 650, 000) with the same number of hairs on
their head (< 200,000). Assuming less than 2/3 of Boston is bald, we have more Bostonians
than possible hair counts, so must be true by Pidgeyhole.

Note: nonconstructive! We know they exist, but we don’t know who! Pidgeyhole Principle
says there must be a collision, but doesn’t give an easy way to actually find the people.

Example: no lossless compression scheme that strictly shortens all n-bit strings. There are
2" bitstrings with length n, but only 2771 + 2772 ... 4+ 28 4+ 20 = 27 — 1 shorter strings
(including the empty string). Any total function from bigger set to smaller set must have
collisions, so it’s not lossless.

Theorem 3 (Generalized Pidgeyhole Principle). If |A| > k - |B|, then every total rela-
tion/function from A to B must have at least k + 1 elements in A that map to the same
element in B.

With either version, proofs are often short but can sometimes require cleverness! Gotta pick
your pigeons, holes, and/or the map between them carefully; not all choices are useful.

One more example: on an 8 x 8 chessboard, we fill 33 of the 64 cells with Rooks. Show we
can find 5 of them that don’t attack each other, i.e., lie in 5 distinct rows and 5 distinct
columns.

Clever idea: Choose 8 pigeonholes, where each one is a subset of 8 cells like this:

21314516781
31415167812
4151678123
50167811234
678112345
718111213456
81112345 |6|7
112(3]4/5]6]7]8

Label each rook with the number on its cell. There are 8 labels and 33 rooks, so at least 5
of them must have the same label. These 5 are in different rows and columns; done!
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3 Combinatorial Proofs / Double Counting

> ()

Proof. How many subsets of {1,2,...,n} are there?

Idea: For each 0 < k < n there are (Z) subsets of size k, so together these should add to the
total number of subsets, 2.

More precisely: Let S be the set of all subsets of {1,2,...,n}. We will count |S| in two
different ways.

First, |S| = 2" since each element is either in or out.

Let’s instead work by cases, depending on the size of the subsets. Let S be the set of subsets
of size k, and note that Sy, S1,..., 5, form a partition of S: every member of S belongs to
exactly one of the Sy. By the sum rule, this means |[S| = Y} [Sk|. But |Si| = (}), so we
get 2" = |S| =" (}), as claimed.

This is a special case of a useful theorem. We've been using binomial coefficients a lot
already; here’s their eponym:

Theorem 4 (Binomial Theorem). For any x,y, and for n € N:

(z+y)" = i (Z) Tt

k=0

where 0° = 1 by convention.

Proof. Expand (z +y)" to get a sum of 2" terms of the form ayas - - - a,, where a; are either
n
x or y. By commutativity, we can group like terms of the form z¥y"~*. There are ( k> such

terms; this is the number of ways we can choose k of the n indices ¢ for which a; = . O]

Example: If n = 3, we have (z + )3 = y3 + 3zy* + 322y + 2.
The coefficient of (2°)y? is

The coefficient of zy? is (
The coefficient of 2%y is (
The coefficient of z3(y°) is

Similarly:
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Theorem 5 (Multinomial Theorem). For any zi,xs, ..., %y, and for n € N:

- ! n e )

ki+kotAkm=n

As before, 0° = 1 by convention, and the summation is over non-negative integers k; that

n
sum to n. ) 1s the multinomial coefficient defined by

klak%"'akm

n B n!
ki koyoo k) Eilkale- k!

() =G+ (5)

Could prove this by algebra using factorials, but no intuition! Here’s a combinatorial proof:

Another useful identity:

Proof. How many subset of {1,2,...,n} have size k7 Let S be this set of size-k subsets.
Then |S| = (Z) But let’s count these in a different way. Every size-k subset of {1,2,... n}
either includes n or doesn’t. Let A be the set of ones that include n, and B the set of ones
that don’t, so S is the disjoint union of A and B.

Note: |B| = (";1), because we're not allowed to use n. Also, |A| = (Zj), because we must
pick n, and then k£ — 1 other numbers from {1,...,n — 1}. So |S| = |A| + |B|, which is
exactly the identity above. [

Note: this fact shows that if we put the numbers (Z) in a big triangle, each is the sum of the
2 above it. This is Pascal’s Triangle. Above we showed that the sum of row k is 2%, and in
homework you’ll show that the sums of diagonals gives Fibonacci Numbers!

Fun exercise: Find a combinatorial proof that
> (- ()
k) \n
k=0
Appendix: Notation

n
Just as E xT; '= T1+ To + ...+ x,, we can similarly define n-way products, unions, and
. i=1
Intersections:
n
HZL’Z' = T X Ty X ... XTIy
i=1
n
s = Siusu...us,
i=1
n

ﬂsi = $NSnN...NnS,

=1
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There are also different notations for indexing;:

[n] :=NN(0,n] ={1,2,...,n}

n
Z x; is another way to write Z ;.

1€[n] i=1
S|

More generally, for a finite indexing set S, Z f(x) means Z f(o(i)), where ¢ : [|S|]] = S
i=1

zeS
is any bijection.

A common abuse of notation is to write Z f(z) instead of Z f(z).
P(x) ze{y:P(y)}

One can even omit the index entirely: Z S means Z x.
TES

All of these notations extend naturally to H, U, ﬂ

Z@ = 0 by convention, because 0 is the identity of +. Basically, it should be true that
m n n 0

in + Z x; = Z% Taking m = 0 tells us le = Z@ = 0.

=1 1=m-+1 =1 i=1

Similarly, for H we have H 0 =1, and U =0, and m@ = U, where U is the universe of

discourse, or “everything”.
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