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Lecture 22: Expectation 

Readings: Section 19.4, 19.5. 

1 Recap 

So far, we saw 

• random variables: (total) functions from the sample space S to another set (typically, 
non-negative real numbers). 

• indicator random variables: functions that map to {0, 1}. 

• random var R to events [R = x] := {ω : R(ω) = x} for any x ∈ range(R). 

• an event E to an indicator random var IE (ω) = 1 if ω ∈ E and 0 otherwise. 

• independence of random variables: given a sample space S, for all x1 ∈ range(R1) and 
x2 ∈ range(R2), the events [R1 = x1] and [R2 = x2] are independent. 

• probability mass functions and cumulative distribution functions. 

2 Expectation 

This lecture is about the notion of expectation of a random variable, and a really cool 
property called linearity of expectation which makes computing expected values so much 
easier. 

Defnition 1 (Expected value of a random variable, or the average, or the mean). X 
Ex [R] := R(ω) · Pr[ω] 

ω∈S 

Example 1: A single throw of a die, sample space S = {1, 2, 3, 4, 5, 6}. R is the number 
that comes up, so R(ω) = ω. 

1 1 1 1 1 1 7 
Ex [R] = 1 · + 2 · + 3 · + 4 · + 5 · + 6 · = 

6 6 6 6 6 6 2 
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The expected value of the dice is NOT necessarily the value you ever expect to see! Chalk 
it up to the weirdness of the language of mathematics. 

The expectation of a random variable with a uniform distribution on a set {a1, . . . , an}
is simply the average of the ai’s. 

Example 2: The expected value of an indicator random variables is the probability that 
it takes on the value 1. If IA is the indicator random variable for an event A, X 

Ex [IA] = IA(ω) · Pr[ω] 
ω∈SX X 

= 0 · Pr[ω] + 1 · Pr[ω] 
ω∈Aω∈A 

= 0 · Pr[IA = 0] + 1 · Pr[IA = 1] 

= Pr[IA = 1] = Pr[A] 

where the latter equality is by the defnition of IA. 

3 How to win the lottery 

Example 3: Each of three people (student, TA, prof) place an ante (two candies each) guess 
heads/tails. A coin is tossed. If all three agree or disagree with the coin, all three get their 
candies back. If two agree with the coin, the pot of 6 candies is split between the two (so, 
one person loses two candies and the other two gain one each). If one agrees with the coin, 
she gets the entire pot (so, she gains 4 candies and the other two lose two each.) 

(play game) 

Is the game fair? Let’s see. Here is the tree diagram: 

student TA prof coin Pr net 

1H 016 
H 1 0T 16 

1H +1H 16T 
1 −2T 16 

(symmetric) 
T T 

H 
T 

T 

H 
HT 

H 
1 
16 +1 
1 
16 −2 
1 
16 +4 
1 
16 −2 



3 Lecture 22: Expectation 

Let P be the random variable denoting the student’s payof. Ex [P ] = 0. 

What if the TA and prof decide beforehand that they are going to collude, i.e. choose 
opposite guesses always. This changes the probability distribution and consequently, the 
expected payof of the student. 

student TA prof coin Pr net 

(symmetric) 
T T 

H 
T 

T 

H 
HT 

T 

H 
T 

T 

H 
H 

H 

H 

0 0 

0 0 
1 +18 

1 
8 −2 
1 +18 

1 −28 

0 +4 

0 −2 

Now, Ex [P ] = −1/2. 

What just happened? Intuitively, the efect of the prof and TA always choosing opposite 
guesses is that the student never has a chance to win alone and pocket the sizeable sum of 
4, and that shows up in her diminished payof of −1/2. 

(Professor Hermann Chernof’s story: see textbook) 

Back to math. . . 

4 Alternate ways to compute the expectation 

Theorem 1. X 
Ex [R] = x · Pr[R = x] 

x∈range(R) 

This formula is more efcient when there are lots of outcomes, but fewer values that R 
can take. 

The proof is similar to what we saw for indicator variables earlier; full details in the 
lecture notes if you’re interested. 
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Proof details; skipped during lecture. X 
Ex [R] = R(ω) · Pr[ω] 

ω∈SX X 
= R(ω) · Pr[ω] 

x∈range(R) ω:R(ω)=xX X 
= x · Pr[ω] 

x∈range(R) ω:R(ω)=xX X 
= x · Pr[ω] 

x∈range(R) ω:R(ω)=xX 
= x · Pr[R = x] 

x∈range(R) 

which is what we wanted. QED. 

Example: the expected number of hearts in a 3-card hand. Defnition would be a sum�
52
� 

with 
3 terms, since that’s the number of outcomes. Or, a sum with just 4 terms (really 

3): 

0 · Pr [H = 0] + 1 · Pr [H = 1] + 2 · Pr [H = 2] + 3 · Pr [H = 3]� �� � � �� � � �
13 39 13 39 13 
1 �2 2 �1 � 3 = 1 · � + 2 · �

52 + 3 · � .52 52 
3 3 3 

Note: this example becomes even easier using linearity of expectation (introduced later this 
lecture). Try it out yourself! Hint: the answer is much simpler than the formula above might 
indicate. 

If the range of R is the natural numbers, we get an infnite sum, which can be rewritten 
in a useful way: 

Theorem 2. If range(R) ⊆ N, X∞ ∞X 
Ex [R] = i · Pr[R = i] = Pr[R > i] 

i=0 i=0 

Why is this last equality true? 

Proof. 

∞X 
Pr[R > i] = Pr[R > 0] + Pr[R > 1] + Pr[R > 2] + . . . 

i=0 

= (Pr[R = 1] + Pr[R = 2] + Pr[R = 3] + . . .)+ 

(Pr[R = 2] + Pr[R = 3] + . . .) + . . . 

Pr[R = i] appears i times, so this is exactly computing the expectation. 
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5 Mean Time to Failure 

Manufacture parts, each part independently defective with probability p. What is the ex-
pected number of parts manufactured by the time you see the frst defective one? (counting 
the defective one) 

Let R be the random variable that denotes the number of parts manufactured by the 
time you see the frst defective part. 

∞ ∞X X 
Ex [R] = Pr[R > i] = (1 − p)i = 1/(1 − (1 − p)) = 1/p 

i=0 i=0 

6 Caveat about similar looking formulas 

We’ve seen four formulas that look very similar: X 
Ex [R] = R(ω) · Pr [ω] Defnition of Ex [R]. Sum over outcomes ω 

ω∈SX 
Ex [R] = x · Pr [R = x] Alternate formula for Ex [R]. Sum over RV values x 

x∈range(R) 

∞X 
Ex [R] = Pr [R > i] Only valid when range(R) ⊆ N. Sum over natural numbers i. 

i=0 

Ex [R1 + R2] = Ex [R1] + Ex [R2] Linearity of expectation. Sum over multiple RVs Ri. 

These formulas are often confused for each other or incorrectly merged together, e.g., sum-
ming over i · Pr [R > i] (which incorrectly combines the second and third formulas). Please 
be sure you know which of these (correct) formulas you are using, so you don’t mix them 
up! 

7 Infnite expectations 

Suppose we want to estimate the expected latency on a communication channel. Strategy: 
try to measure 100 times and take the average (the so-called “empirical mean”). how well 
does the empirical mean approximate the real mean / expected value? 

Say, the latency is i ms with probability 1/i. the expected latency is then 

∞X 
1/i 

i=1 

which diverges. The expectation is unbounded while the empirical mean is fnite. 
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8 Linearity of Expectation 

Theorem. For random variables R1 and R2, 

Ex [R1 + R2] = Ex [R1] + Ex [R2] 

Compare: For events A and B, Pr(A ∧ B) = Pr(A) · Pr(B). Only true when A and B are 
independent. And Pr [A ∪ B] = Pr [A] + Pr [B], but only when disjoint. 

In contrast, linearity of expectation applies to any random variables. No need for inde-
pendence! Which is what makes it a formidable tool in our arsenal. 

Proof details; skipped during lecture. X 
Ex [R1 + R2] = (R1 + R2)(ω) · Pr[ω] 

ω∈SX 
= (R1(ω) + R2(ω)) · Pr[ω] 

ω∈SX X 
= R1(ω) · Pr[ω] + R2(ω) · Pr[ω] 

ω∈S ω∈S 

= Ex [R1] + Ex [R2] 

Note: Also works for more than two random variables. But need a fxed number of 
random variables. 

Powerful technique to compute Ex [R] via linearity of expectation: Write R as a sum of 
two simpler random variables. 

Example: R is the sum of two fair dice. R = R1 + R2 where R1 is the result of the frst 
die and R2 the result of the second die. Then, 

7 7 
Ex [R] = Ex [R1 + R2] = Ex [R1] + Ex [R2] = + = 7 

2 2 

The dice did not have to be independent! The two dice could be perfectly correlated, i.e., 
always have exactly the same rolls, and the calculation we did above applies just as well! 

9 Cellphone check problem 

Before entering the fnal exam room, you check your cellphone by putting into a bag (together 
with everyone else’s phones). When leaving, you pick a random one of the phones from the 
bag. What is the expected number of people who get their cellphone back? 
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Let R be the number of people who got their phones back. 

nX 
Ex [R] = k · Pr[R = k] 

k=0 

But what is Pr[R = k]?? How do we compute it? 

Fortunately, linearity of expectation comes to the rescue. Let Ii be indicator random 
variables where � 

1 if the ith person gets their phone back 
Ii = 

0 otherwise 

Now, and it’s important you make sure you understand this: 

R = I1 + I2 + . . . + In 

So, 
n nX X 

Ex [R] = Ex [Ii] = Pr[Ii = 1] 
i=1 i=1 

where the second equality is because the expected value of an indicator random variable is 
just the probability that it is 1. 

What is Pr[Ii = 1]? It’s the probability that the ith person gets their cellphone back. 
This is 1/n. (Why is this the case? Imagine the cellphones being permuted randomly and the 
ith person gets the ith cellphone in the permuted sequence. Then, the chance that anyone 
gets their phone back is 1/n.) 

So, 
Ex [R] = n · 1/n = 1 

which is our answer. QED. 

Incidentally, it turns out that 

X1 
n−k 

(−1)i 
Pr[R = k] = 

k! i! 
i=0 

which is a nasty expression. Using this, we can compute the expectation, but it’s a rather 
unpleasant calculation. Linearity of expectation makes it all so much easier. Plus it’s much 
more general in that it deals with random variables which are correlated in arbitrary ways. 

Rotating table version. Now, let’s change the game a bit. n of us go to the restaurant 
Mu Lan, place our cellphones on the lazy suzan in the middle of the table and give it an 
energetic spin. What’s the expected number of us that get their phone back in front of us? 
Either we all get our phones back (which happens with probability 1/n), or none of us do 

https://mulantaiwancambridge.com/
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(which happens with probability 1 − 1/n). So, if R is the random variable as above, that 
counts the number of us that got our phones back in front of us, then � � 

1 1 1 
Ex [R] = n · + 0 · 1 − = n · = 1. 

n n n 

That was simple enough, but the point is that the exact same calculation that we did above 
would’ve given us the answer here as well, even though the random variables Ii are very not 
independent. (Note that in the cellphones in a bag game as well, the Ii were not independent, 
but ”less so” than the lazy suzan game.) 
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