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Problem Set 2

e Due Date: 11:59pm on Tuesday 20*" February, 2024

e Days Covered: 03 and 04 (including Lecture, Warm-Up, and Recitation)

Problem 1. Outlining Proofs [10 points]

See lecture 02 (or the corresponding lecture notes) for a discussion of outlining proofs, even
with only partial information. Practice this skill by outline proofs for each of the “theorems”
below as much as you can, using the techniques indicated. Pretend that the underlined
words are meaningful but that their precise meanings are not available here. This means
your “proofs” will have missing steps that are impossible to complete without definitions
for these words, but that’s fine — we’re interested in the parts of the proof that can be
completed even without knowing or considering the underlined terms’ meanings. You should
break down the proof as granularly as you can using just the given information, and at any
step that needs additional information, identify the remaining task or tasks using square
brackets. The example seen is lecture looks like this:

Theorem: “For every integer n, the number n is fooish precisely when n + 1 is barsome.”

Proof Outline. Suppose n is any integer; we must show F'(n) and B(n + 1) both imply each
other.

To prove F(n) IMPLIES B(n + 1), first assume F'(n) is true. [TODO: prove B(n + 1).]
To prove B(n+ 1) IMPLIES F'(n), instead assume B(n+1) is true. [TODO: prove F(n).] O

(a) [3pts] Theorem: “Every natural number is tall or wide, but not both.” (Proof method:
proof by cases.)

(b) [3pts] Theorem: “There exists a happy natural number between 10 and 1000 that has
no happy proper divisors.” (Proof method to use: choose 25 as the example.)

(c) [4pts] Theorem: “There are no devious natural numbers.” (Proof method to use:
regular induction, with base cases 0 and 1.)

Hint: Be sure to clearly identify your predicate P(n), and to precisely specify any assump-
tions and/or goals in your base cases and inductive step.
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Problem 2. Spotting Errors [15 points|

Define a sequence of integers (x1, s, z3,...) as follows: x; = 4, x5 = 13, and for all ¢ > 3,
x; = 6x;_1 — 8x;_5. So the sequence begins with (z1,xe, z3,24,...) = (4,13,46,172,...,).
Our goal is to prove that for all ¢ > 1, z; > 0.

Addled Abra tries to prove the claim directly by strong induction:

Proof. We'll use strong induction with inductive hypothesis P(i) := “z; > 07 to
prove that P(i) holds for every i > 1.

Base Cases, P(1) and P(2): 23 =4 > 0 and x5 = 13 > 0.

Inductive Step: Let’s use strong induction, so suppose i« > 2, and we can assume

P(1),P(2),...,P(i), i.e., we can assume that 1 > 0, 23 > 0, ..., z; > 0. We
must show P(i+1), i.e., that x;,; is also > 0. Well, z;,1 = 6x;—8x;_1 > 0—8x;_1,
but, uh, ...Huh, I don’t think this is working. O

Abra gets points for honesty, and goes to the instructors for help.

(a) [3pts] Befuddled Brynmor tries to help by proving the claim as follows. What is his
mistake?

Proof. We'll use the stronger induction hypothesis Q(i) := “z; > 2'” using strong
induction to show that (i) holds for every i > 1.

Base Cases, Q(1) and Q(2): z; =4 > 2! and xy = 13 > 22

Inductive Step: Suppose i > 2. Assume x5, > 2F for 1 < k < 4, and let’s prove
that x4, > 27!, Consider ;41 = 6x; — 8x;_;. By the inductive hypothesis know
that z; > 2° and z;_; > 2. Plug those two inequalities into z;,1 = 6x; — 87;_;
and you get x;.; > 6-2" —8.2"1 =6.2.271 —8.2071 = 4.271 = 21 That
completes the inductive step, so x; > 2¢ for all i.

Since 2¢ > 1, we have that x; > 1, as desired. O

(b) [3pts] Erroneous Erik tries to help by proving the claim as follows. What is his mistake?

Proof. We'll use (regular) induction on the stronger hypothesis R(i) := “x; >
3x;_1”, proving that R(i) holds for every ¢ > 2.

Base case, R(2): o =13 > 12 = 3.

Inductive Step: Suppose i > 2. Assuming that x; > 3x;_; (i.e., R(7)) is true, let’s
show that ;11 > 3z; (i.e., R(i+ 1)) is also true. Consider x;;; = 6z; — 8x;_1. By
the inductive hypothesis we know that z; > 3x;_1, so gxi > 8x;_1. Plug that into
ZTiy1 = b6x; — 8x;_1 = %xi + %azi — 8x;_1 and you get x; 11 > 13—09@. Since x; > 0,
%xi > 3x;, S0 T;11 > 3x;. That completes the inductive step, so x; > 3x;_ for all
1> 2.

We know that xz; > 0, and for all i > 2, x; > 3x;_1. Also, z;_1 > 0, so x; > 0 for
all 7. O
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(c) [3pts] Overzealous Zach tries to help by proving the claim as follows. What is his
mistake?

Proof. We'll use strong induction on the stronger induction hypothesis S(i) :=
“r; = 4" proving that S(i) holds for every i > 1.

Base case, S(1): z; =4 = 4%

Inductive Step: Supposei > 1. If S(1),...,S5(i) are all true, let’s show that S(i+1)
is true, i.e., ;1 = 471, We know 2,4, = 62; — 87;_;. By the inductive hypothesis
(specifically S(i — 1) and S(i)) we know that z;_; = 4! and x; = 4°. Plug those
into x;,, = 6x; — 8x;_; and you get x;,; = 6-4' —8- 471 =644 — 8.4 =
16 - 471 = 4241 = 41 That completes the inductive step, so x; = 4x,;_; for all
1> 1.

Since 4° > 1, we have that x; > 1, as desired. O

Hint: Zach’s claim is false if © = 2. If you know the base case ¢ = 1, what part of the
inductive step when ¢ = 1 fails?

(d) [6pts] Prove the original claim that for all i > 1, z; > 0.

Hint: See if you can fix Erroneous Erik’s argument. What stronger inductive hypothesis will
you use?

Problem 3. Integer Multiplication from Bit Shifts [17 points]

Multiplying and dividing an integer n by 2 requires only a one-bit left or right shift of
the binary representation of n, which is a fast, hardware-supported operations on most
computers. For example, the number 6 can be represented in binary as (0110); multiplying 6
by 2 yields 12, which is represented as (1100). The number 18 can be represented in binary
as (10010); dividing 18 by 2 yields 9, which is represented as (01001).

In this problem, we will show that the following simple algorithm (state machine) computes
the product of two nonnegative integers x and y using just these shift operations, along with
integer addition:

The set of states is N> = {(r,s,a) | r,s,a € N}, i.e., the set of triples of nonnegative
integers. The start state is (z,y,0). The transitions are as follows:

( " (2r,s/2,a) for even s > 0,
T, S, a
(2r,(s —1)/2,a+r) for odd s > 0.

No transitions are defined starting from triples in which s = 0.

We will show that this state machine eventually reaches a final state with no transitions
remaining (the algorithm doesn’t run forever), and that this final state (rf, sy, ar) has ay =
x -y. Thus, the algorithm computes the desired answer.
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(a) [2pts] Compute the full sequence of transitions from starting state (5,22,0). Does it
correctly compute 5 - 22 = 1107

(b) [4pts] Invariant: Define P(r,s,a) := “rs +a = xy”. Prove that P is an invariant of
the state machine.

(c) [1pts] Final states: A final state is one from which no transitions are possible. Which
states are final in this state machine?

(d) [3pts] Partial correctness: Use Parts (b) and (c) to conclude that, in any reachable
final state (rf,sf,ar), ay must be equal to the product zy.

Now we consider termination. For a natural number n, let bitcount(n) denote the number
of bits used when n is written in binary. For example, bitcount(5) = bitcount(1015) = 3,
bitcount(1) = 1, and we’ll say that bitcount(0) = 0. (Note: This can be written explicitly
as bitcount(n) = [logy(n 4+ 1)].)

(e) [5pts] Termination: Prove that bitcount(s) is a strictly decreasing derived variable.
Explain why this implies that the algorithm always terminates, that is, it has no infinite
executions.

(f) [2pts] Time bound: Explain why Part (e) implies that, from ay starting state (z,y,0),
the algorithm terminates after at most bitcount(y) = [log,(y + 1)] steps.

Problem 4. Invariant Enlightenment [8 points]

The ideal 6.1200 classroom has assigned desks (each student sits at the same position every
day) arranged in a square grid. Students are working together to reach Invariant Enlight-
enment: a profound understanding of invariants so thorough that the knowledge radiates
around them in a glowing aura. Invariant Enlightenment never goes away (it’s an invariant,
after all!) and can sometimes be taught to other students.

Here is an illustration of a 6 x 6-seat classroom with seats represented by squares. The
locations of students who have initially been enlightened are marked with an asterisk.

*x *

Every day, students talk to their neighbors about invariants in an attempt to reach enlight-
enment. On each day, a student is enlightened if either

e the student was already enlightened on a previous day, or
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e the student was adjacent to at least two students who were enlightened on an earlier
day (these neighbors worked together to teach the student all about invariants).

Here adjacent means the students’ individual squares share an edge (front, back, left or
right); they are not adjacent if they only share a corner point. So each student is adjacent
to 2, 3 or 4 others.

In the example, Invariant Enlightenment is taught to more students as shown below:

* * X | Xk * X | k| ok *
% * X X |k | k| ok
X | X X | X X |k | k| ok
= =
* k| ok | ok
* * X | %k
* * * kX |k X | ok *

In this example, over the next few days, all students reach enlightenment.

Theorem. If fewer than n students among those in an n X n arrangment are initially en-
lightened, and additional students reach enlightenment only by being taught by two or more
neighbors, then there will be at least one student who never reaches enlightenment.

Prove this theorem.

Hint: You’ll want to find an applicable preserved state predicate or monotonic derived
variable that can help you argue about the set of enlightened students as time proceeds.
Make sure to prove your claims.

In this problem and many others, finding the right property can be challenging! If you are
stuck, ask at Office Hours or on Piazza for an extremely powerful one-word clue (and even
more hints as necessary)!
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