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L24: Martingales: stopping and converging

Outline:

Review of martingales

Stopped martingales

The Kolmogorov submartingale inequality

SLLN for IID rv’s with a variance

The martingale convergence theorem

A sequence {Z,; n > 1} of rv’s is a martingale if
ElZn| Zn-1,Zn—2,...,21) = Zp-1; E[|Zn]] <o (1)
for all n > 1.

Recall that E[Z, | Z,_1,...,Z1] is a rv that maps each
sample point w to the conditional expectation of Z, con-
ditional on 71 (w),...,Z,_1(w). For a martingale, this ex-
pectation must be the rv Z,, ;.

Lemma: For a martingale, {Z,; n > 1}, and for n > i > 1,
ElZn|Ziy Zi1...,Z1) = Z; E[Zn] = E[Z)]

Can you figure out why E[Z,, | Zm,...Z1] = Z, fOr m > n?

Note that E[Z, | Z1] = Z; and E[Z,] = E[Z;1] for all n > 1.



Simple Examples of martingales

1) Zero-mean RW: If Z, =} | X; where {X;;i > 1} are
IID and zero mean, then {Z,; n > 1} is a martingale.

2) If Z, =7 ,X; where E[X;| X;_1,...,X1] =0 for each
i >1, then {Z,; n > 1} is a martingale.

3) Let X; = U,;Y; where {U;; i > 1} are IID, equiprobable
+1. The Y are independent of the U,. Then {Z,; n > 1},
where 7, = X1 4+ --- X,, IS a martingale.

4) Product form martingales: Let {X;;: > 1} be a se-
quence of IID unit-mean rv’s. Then {Z,; n > 1}, where
Zn = X1X5--- Xy, IS @ martingale.

If px(0) = px(2) = 1/2, then py (2") = 27" and pg,(0) =

Sub- and supermartingales are sequences {Z,;n > 1} with
E[|Zr]] < co for which inequalities replace the equalities of
martingales. For all n > 1,

ElZn| Zn_1,.--,Z1] > Zp_1 submartingale

ElZn| Zn_1,..-,Z1] < Zp_1 supermartingale
If {Z,; n > 1} is a submartingale, then {—-Z,; n > 1} is
a supermartingale and vice-versa, so we consider only
submartingales. For submartingales,

E[Zn|Zi,-~-7Z1]ZZi for alln>1:>0

E[Zn] > E[Z;] foralln>i:i>0



Convex functions

A function h(z), R — R, is convex if each tangent to the
curve lies on or below the curve. The condition A" (z) > 0
is sufficient but not necessary.

e SN
— ~ h(z1) + c(z — 21)

| c= h(x1

21 =E[Z] z

Lemma (Jensen’s inequality): If h is convex and 7 is a
rv with finite expectation, then

h(E[Z]) < E[n(Z)]

Jensen’s inequality leads to the following theorem. See
proof in text.

Thm 7.8.1: If {Z,; n > 1} is a martingale or submartin-
gale, if h is convex, and if E[|h(Z,)|] < oo for all n, then
{h(Zn); n > 1} is a submartingale.

For example, if {Z,; n > 1} is a martingale, then {|Z,|; n >
1}, {Z2; n> 1} and {e"%"; n > 1 are submartingales if the
marginal expected values exist.



Stopped martingales

The definition of a stopping trial J for a stochastic pro-
cess {Zn; n > 1} applies to any process. That is, J must
be a rv and {J = n} must be specified by {Z1,...,2Z,}.

A possibly defective rv J is a mapping from 2 to the
extended reals Rt where {J = oo} and {J = —oco} might
have positive probability. The other provisos of rv’s still
hold.

A possibly defective stopping trial is thus a stopping rule
in which stopping may never happen (such as RW'’s with
a single threshold).

A stopped process {Z}; n > 1} for a possibly defective
stopping time J on a process {Z,; n > 1} satisfies Z; = Z,
ifn<Jand Z; =25 if n>J.

For example, a given gambling strategy, where 7, is the
net worth at time n, could be modified to stop when 2,
reaches some given value. Then Z} would remain at that
value forever after, while Z,, follows the original strategy.

Theorem: If J is a possibly defective stopping rule for
a martingale (submartingale), {Z,;n > 1} , then the
stopped process {Z}; n > 1} is a martingale (submartin-
gale).

Pf: Obvious??? The intuition here is that before stop-
ping occurs, Z; = Z,, so Z,; satisfies the martingale
(subm.) condition. Afterwards, Z) is constant, so it
again satisfies the martingale (subm) condition.



Proof that {Z}; n > 1} is a martingale: Note that

n:

n—1

Zpn= 2" Zmlij=m) + Zul{y>n)

m=1
Thus |Z)| <Y <n|Zm|+|Zn|. Thus means that E[|Z}|] < oo
since it is bounded by the sum of n finite numbers.

Next, let Z("~1) denote Z,_1,...,Z;, and consider
E|Z:1 29D = Y E|Zulgmmy | 2070 4+ E [ Zulliyzn | 2079
m<n
E [Zm]l{,]:m} | 71 = 3(7171)_ = { 278' :: i ; z form <n
E [ZmH{sz} | Z_’(nfl): = Znlj—p.
E [ZnH{Jzn} | Z0D) = Zuealgyse
(221 200] = Y Zulymwy + Zualiszn
- m<n
= Z Zmlj=m) + Zn-1[l{j=n—13 + L{y>n}]
m<n—1
= Zna

This shows that E[z; | Z(""D| = 7 ;. To show that
{Z}; n > 1} is a martingale, though, we must show that
E [Z;’; | Z*(”—l)} = Z*_,. However, Z*("=1) is a function of
Z(n=1),

For every sample point 7("—1) of Z(n—1) Jeading to a given
7(n=1) of Z*(n=1) we have
Elz; | 20D =20 D] =2
and thus
Elz;) 2D = 2D =22 .
QED
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A consequence of the theorem, under the same assump-
tions, is that

E[Z1] < E[Z;] < E[Z] (submartingale)
E[Z1] = E[Z)] = E[Zy] (martingale)

This is also almost intuitively obvious and proved in Sec-
tion 7.8.

Recall the generating function product martingale for a
random walk. That is, let {X,; n > 1} be IID and {S,;n >
1} be a random walk where S, = X1 4+ --- + Xj.

Then for r such that ~(r) exists, let Z,, = exp[rS, — nvy(r)].
Then {Z,; n > 1} is a martingale and E[Z,] = 1 for all
n>1.
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For r such that ~(r) exists, let Z,, = exp[rSn,—nvy(r)]. Then
{Zn; n > 1} is a martingale and E[Z,] =1 for all n > 1.

Let J be the nondefective stopping time that stops on
crossing either o« > 0 or 8 < 0. Then E[Z}] = 1 for all
n>1.

Also, limp—x Z; = Z; WP1 and

E[Z;] =E[exp[rS;— Jy(r)]=1

This is Wald’s identity in a more general form. The
connection of lim,, Z;) to Z; needs more care (see Section
7.8), but this shows the power of martingales.
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Kolmgorov’s submartingale inequality

Thm: Let {Z,; n > 1} be a non-negative submartingale.
Then for any positive integer m and any a > 0,

E[Z
Pr{ max Z; > a} < [Zm] (2)
1<i<m a

If we replace the max with Z,,, this is the lowly but useful
Markov inequality.

Proof: Let J be the stopping time defined as the smallest
n < m such that 7, > a.

14

If Z,, > a for some n < m, then J is the smallest n for
which Z, > a.

If 7, < a for all n < m, then J = m. Thus the process
must stop by time m, and Z; > a iff Z;, > a for some
n <m. Thus

E[Z
Pr{ max ana}:Pr{ZJZa}g 2
1<n<m

a

Since the process must be stopped by time m, we have
ZJ == Z;’}L

E[Z}] < E[Zn], so the right hand side above is less than
or equal to E[Z,,] /a, completing the proof.
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The Kolmogorove submartingale inequality is a strength-
ening of the Markov inequality. The Chebyshev inequality
is strengthened in the same way.

Let {Z,;n > 1} be a martingale with E|Z2| < oo for all
n>1. Then

E|Z2
Pri max |Zp| >b; < [ m};
1<n<m b2

for all integer m > 2,all b > 0.

Let {Sy; n > 1} be a RW with S, = X;+---4+ X, where each

X, has mean X and variance o2. Then for any positive
integer m and any ¢ > 0,

2
- (o}
Pr{ max |Sn —nX| > me} < .
1<n<m
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SLLN for IID rv’'s with a variance

Thm: Let {X;;i> 1} be a sequence of IID random vari-
ables with mean X and standard deviation ¢ < co. Let
Spn=X1+ -+ Xn. Then for any ¢ > 0,
Pr{ lim &zX} =1
n—oo n

Idea of proof:

> — m g2 202
- > < =
Uiz 80 = 5

m=k

Then lower bound the left term to

Pr{ Ej { max ISn—n7|22ne}}

m—k om—1 <p<2m
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The martingale convergence theorem

Thm: Let {Z,; n > 1} be a martingale and assume that
there is some finite M such that E[|Z,|] < M for all n.
Then there is a random variable Z such that, lim,—~ Z, =
Z WP1.

The text proves the theorem with the additional con-
straint that E |z2| is bounded. Either bounded E[Z2] or
bounded E[|Z,]|] is a very strong constraint, but the the-
orem is still very powerful.

For a branching process {X,; n > 1} where the number
Y of offspring of an element has Y > 1, we saw that
{Xn/?”;n > 1} is a martingale satisfying the constraint,
so X"/Y" — Z WP1.
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