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L24: Martingales: stopping and converging 

Outline: 

•	 Review of martingales 

•	 Stopped martingales 

•	 The Kolmogorov submartingale inequality 

• SLLN for IID rv’s with a variance 

•	 The martingale convergence theorem 
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A sequence {Zn; n ≥ 1} of rv’s is a martingale if 

E 
�  
Zn | Zn−1, Zn−2, . . . , Z1

�
= Zn−1; E [|Zn|] < ∞ (1) 

for all n ≥ 1. 

 
Recall that E 

�
Zn | Zn 1, . . . , Z1

�
is a rv that maps each −

sample point ω to the conditional expectation of Zn con­

ditional on Z1(ω), . . . , Zn−1(ω). For a martingale, this ex­

pectation must be the rv Zn−1. 

Lemma: For a martingale, {Zn; n ≥ 1}, and for n > i ≥ 1,


E 
�  
Zn | Zi, Zi 1 . . . , Z1

�
= Zi : E [Zn] = E [Zi]
−

Can you figure out why E [Zn | Zm, . . . Z1] = Zn for m ≥ n?


Note that E [Zn | Z1] = Z1 and E [Zn] = E [Z1] for all n > 1. 
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Simple Examples of martingales 

1) Zero-mean RW: If Zn = n 
 where i=1 Xi {Xi; i ≥ 1} are 

IID and zero mean, then {Zn

�

; n ≥ 1} is a martingale. 

 
2) If Z n 

n = 
�

 where E 
�
Xi | =1 Xi Xi−1, . . . , X = 0 for eachi 1

i ≥ 1, then {Zn; n ≥ 1} is a martingale. 

�

3) Let Xi = UiYi where {Ui; i ≥ 1} are IID, equiprobable 

±1. The Yi are independent of the Ui. Then {Zn; n ≥ 1}, 
where Zn = X1 + · · · Xn, is a martingale. 

4) Product form martingales: Let {Xi; i ≥ 1} be a se­

quence of IID unit-mean rv’s. Then {Zn; n ≥ 1}, where 

Zn = X1X2 · · · Xn, is a martingale. 

If p (0) = p (2) = 1/2, then p (2n) = 2−n 
X X Z and n pZ (0) = n

1 − 2−n . Thus, limn  →∞ Zn = 0 WP1 and limn→∞ E [Zn] = 1. 
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Sub- and supermartingales are sequences {Zn; n ≥ 1} with 

E [|Zn|] < ∞ for which inequalities replace the equalities of 

martingales. For all n ≥ 1, 

E 
�
Zn | Zn 1, . . . , Z1

� 
≥ Zn 1 submartingale 

�
−

� 
−

E Zn | Zn 1, . . . , Z1 ≤ Zn 1 supermartingale − −

If {Zn; n ≥ 1} is a submartingale, then {−Zn; n ≥ 1} is 

a supermartingale and vice-versa, so we consider only 

submartingales. For submartingales, 

E [Zn | Zi, . . . , Z1] ≥ Zi for all n > i > 0 

E [Zn] ≥ E [Zi] for all n > i > 0 

4 



✭✭✭ ✭
✭✭ ✟✟

✭✭ ✟
✭ ✟h(x) ✭✭

✟✭✭✭✭
✭✭✭ ✟

✭✭
❤✭❤ E [h(Z ] ✟✭✭  ) ✟

❤ ✟❤❤❤ ✟❤❤❤ ✟❤❤❤✟ h(x1) + c(x  x1) 
c = h�(x1

−
) 

h(x) = |x
❅ 

|
�❅ �

❅ � 
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Convex functions 

A function h(x), R → R, is convex if each tangent to the

curve lies on or below the curve. The condition h��(x) ≥ 0 

is sufficient but not necessary. 

x1 = E [Z] x

Lemma (Jensen’s inequality): If h is convex and Z is a 

rv with finite expectation, then 

h(E [Z]) ≤ E [h(Z)] 
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Jensen’s inequality leads to the following theorem. See 

proof in text. 

Thm 7.8.1: If {Zn; n ≥ 1} is a martingale or submartin­

gale, if h is convex, and if E [|h(Zn)|] < ∞ for all n, then 

{h(Zn); n ≥ 1} is a submartingale. 

For example, if {Zn; n ≥ 1} is a martingale, then {|Zn|; n ≥ 

1}, { 2Z ; n ≥ 1} and {erZn
n ; n ≥ 1 are submartingales if the

marginal expected values exist. 
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Stopped martingales 

The definition of a stopping trial J for a stochastic pro­

cess {Zn; n ≥ 1} applies to any process. That is, J must 

be a rv and {J = n} must be specified by {Z1, . . . , Zn}. 

A possibly defective rv J is a mapping from Ω to the 

extended reals R+ where {J = ∞} and {J = −∞} might 

have positive probability. The other provisos of rv’s still 

hold. 

A possibly defective stopping trial is thus a stopping rule 

in which stopping may never happen (such as RW’s with 

a single threshold). 

A stopped process {Zn
∗; n ≥ 1} for a possibly defective 

stopping time J on a process {Zn; n ≥ 1} satisfies Zn
∗

 = Zn

if n ≤ J and Zn
∗ = ZJ if n > J. 
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For example, a given gambling strategy, where Zn is the 

net worth at time n, could be modified to stop when Zn 

reaches some given value. Then Zn
∗ would remain at that 

value forever after, while Zn follows the original strategy. 

Theorem: If J is a possibly defective stopping rule for 

a martingale (submartingale), {Zn; n ≥ 1} , then the 

stopped process {Zn
∗; n ≥ 1} is a martingale (submartin­

gale). 

Pf: Obvious??? The intuition here is that before stop­

ping occurs, Zn
∗ = Zn, so Zn

∗ satisfies the martingale 

(subm.) condition. Afterwards, Zn
∗ is constant, so it 

again satisfies the martingale (subm) condition. 
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Proof that {Zn
∗; n ≥ 1} is a martingale: Note that 

n−1
Zn
∗

 = 
� 

ZmI{J=m} + ZnI{J
m

≥n
=1 

}

Thus |Zn
∗| ≤ m<n |Zm|+ |Zn|. Thus means that E [|Zn

∗|] < ∞ 

since it is bounded

�

 by the sum of n finite numbers. 

Next, let Z�(n−1) denote Zn−1, . . . , Z1 and consider 
�     

E  � (n 1) (Z � (n 1) � n 1)
n
∗

 | Z −
�

=	
�

E ZmI J=m  Z − + E ZnI −
} {J≥n  Z{ }

m<n 

 

�
|

� �
|

�

�  
(n 1) (n 1) zm ; if J =  

 I �	 m
E Zm {J=m | Z − = �z − = fo

(

�
r m < n } 0 ; if J = m. 

E 
�  

1)

�
Z I �

J=m} | Z n−

�

m = ZmIJ=m. {
 

E I | � ( 1)Z n
n

�

{J=n Z − = Z I
�

} n−1 {J≥n} 
  

E ∗ | � ( 1)Z  Z n
n

−

�

�
= 

�
ZmI{J=m} + Zn−1I{J≥n}

m<n 

= 
� 

ZmI{J=m} + Zn−1[I{J=n−1} + I{J≥n ] }
m<n−1 

= Zn
∗
−1 

9 

�

 
This shows that E 

�
Z∗ | Z�(n

n
−1)

�
= Z . To show that n

∗
−1

{Z�n
∗; n ≥ 1} is� a martingale, though, we must show that  

E Zn
∗ | Z�∗(n−1) = Z∗ . However, (Z� n 1) is a function of n

∗
−1

−

Z�(n−1). 

For every sample point (�z n−1) of Z�(n−1) leading to a given 

�z∗(n−1) of Z�∗(n−1), we have 

 
�  
∗ | �(n−1) (E Zn = �z n−1)Z

�
= zn

∗
−1 

and thus 

E 
�  
Zn
∗

 | (Z�∗ n−1) = �z ∗(n−1)
�
= zn

∗
−1. 

QED 
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A consequence of the theorem, under the same assump­

tions, is that 

 
E [Z1] ≤ E Zn

∗
 ≤ E [Zn] (submartingale) 
 

E [Z1] = E 

� �

�
Zn
∗

 
�

= E [Zn] (martingale) 

This is also almost intuitively obvious and proved in Sec­

tion 7.8. 

Recall the generating function product martingale for a 

random walk. That is, let {Xn; n ≥ 1} be IID and {Sn; n ≥ 

1} be a random walk where Sn = X1 + · · · + Xn.

Then for r such that γ(r) exists, let Zn = exp[rSn − nγ(r)]. 
Then {Zn; n ≥ 1} is a martingale and E [Zn] = 1 for all 

n ≥ 1. 
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For r such that γ(r) exists, let Zn = exp[rSn −nγ(r)]. Then 

{Zn; n ≥ 1} is a martingale and E [Zn] = 1 for all n ≥ 1. 

Let J be the nondefective stopping time that stops on 

crossing either α > 0 or β < 0. Then E [Zn
∗] = 1 for all 

n ≥ 1. 

Also, limn→∞ Zn
∗

 = ZJ WP1 and 

E [ZJ ] = E [exp[rSJ − Jγ(r)] = 1 

This is Wald’s identity in a more general form. The 

connection of limn Zn
∗ to ZJ needs more care (see Section 

7.8), but this shows the power of martingales. 
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Kolmgorov’s submartingale inequality 

Thm: Let {Zn; n ≥ 1} be a non-negative submartingale. 

Then for any positive integer m and any a > 0, 
�  

E [Zm] 
Pr max Zi  a  . (2)

1≤i≤m 
≥

�

≤
a 

If we replace the max with Zm, this is the lowly but useful 

Markov inequality. 

Proof: Let J be the stopping time defined as the smallest 

n ≤ m such that Zn ≥ a. 
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If Zn ≥ a for some n ≤ m, then J is the smallest n for 

which Zn ≥ a. 

If Zn < a for all n ≤ m, then J = m. Thus the process 

must stop by time m, and ZJ ≥ a iff Zn ≥ a for some

n ≤ m. Thus 
�  

E [Z  
Pr max Z  ≥  ]

n   Ja

�

 = Pr{ZJ ≥ a} ≤ . 
1≤n≤m a 

Since the process must be stopped by time m, we have 

ZJ = Zm
∗ .

E [Zm
∗ ] ≤ E [Zm], so the right hand side above is less than 

or equal to E [Zm] /a, completing the proof. 
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The Kolmogorove submartingale inequality is a strength­

ening of the Markov inequality. The Chebyshev inequality 

is strengthened in the same way. 



Let { 2 Zn; n ≥ 1} be a martingale with E 

�
Zn 

�
< ∞ for all 

n ≥ 1. Then 

� 
 
E 2Zm 

Pr max |Zn| ≥ b ≤ ; for all integer m  2,all b > 0.
1

≥  
≤ 2n≤m 

� �

b  

�

Let {Sn; n ≥ 1} be a RW with Sn = X1+
2 

· · ·+Xn where each 

Xi has mean X and variance σ . Then for any positive 

integer m and any � > 0, 

Pr

� 2
σ
 max Sn 

n
− nX

1 m 
| | ≥ m� . 

≤ ≤

�

 ≤ 
m�2

16 

SLLN for IID rv’s with a variance 

Thm: Let {Xi; i ≥ 1} be a sequence of IID random vari­

ables with mean X and standard deviation σ < ∞. Let 

Sn = X1 + · · · + Xn. Then for any � > 0,
�
 


Sn
Pr lim = X


�
= 1


n→∞ n

Idea of proof: 

 ∞ �
 �

�  ∞ 2 

Pr max |  nX| � ≤


�
 Sn − ≥ 2m σ 2 2σ

 = 

 2m�2 2k�2 1 n= ≤2  
m k ≤ m

m=k 

Then lower bound the left term to



 

 

Pr
�

�
 
∞  

 max Sn  nX   2n� 

 
2m

 
−1≤n 2m ≤ m 

=k

| − | ≥
�




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The martingale convergence theorem 

Thm: Let {Zn; n ≥ 1} be a martingale and assume that 

there is some finite M such that E [|Zn|] ≤ M for all n. 

Then there is a random variable Z such that, limn→∞ Zn = 

Z WP1. 

The text proves 

straint that E 
�

2Zn 

�the theorem with the additional con­  
is bounded. Either bounded E 

�
2Zn 

bounded E [|Zn|] is a very strong constraint, but the the­

�
or 

orem is still very powerful. 

For a branching process {Xn; n ≥ 1} where the number 

Y of offspring of an element has Y > 1, we saw that 

{  nXn/Y ; n ≥ 1} is a martingale satisfying the constraint, 

so Xn n /Y → Z WP1.
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