
6.262: Discrete Stochastic Processes 4/13/11 

L18: Countable state Markov chains and processes 

Outline: 

• Review - Reversibility 

• Sample-time M/M/1 queue 

• Branching processes 

• Markov processes with countable state spaces 

• The M/M/1 queue 
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For any Markov chain, 
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Pr
�  
Xn 1 | − Xn, Xn+1, . . . , Xn+k = Pr{Xn−1 | Xn} . 

The Markov condition works in

�

 both directions, but 
need steady state in forward chain for homogeneity 
in backward chain. 
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For a positive-recurrent Markov chain in steady-

state, the backward probabiities are 

Pr{Xn 1 = − j | Xn = i} = Pjiπj/πi. 

Denote Pr{Xn 1 = j |  − Xn = i} as the backward tran­
sition probabilities. Then 

πiP
∗ = πjPji =     ij Pr{Xn = i, Xn−1 = j} .

Def: A chain is reversible if Pij
∗ = Pij for all i, j. 

If chain is reversible, then πiPij = πjPji for all i, j, 
i.e., if Pr{Xn = i, Xn 1 = j} = Pr{Xn = j, Xn 1 = − − i}. 
In other words, reversibility means that the long-

term fraction of i to j transitions is the same as the 
long-term fraction of j to i transitions. 

All positive-recurrent birth-death chains are reversible. 
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More general example: Suppose the non-zero tran­
sitions of a positive-recurrent Markov chain form 
a tree. Then the number of times a transition is 
crossed in one direction differs by at most one from 
the number of transitions in the other direction, so 
the chain is reversible. 

Note that a birth-death chain is a very skinny tree. 

The following theorem is a great time-saver and is 
sometimes called the guessing theorem. 

Thm: For a Markov chain {Pij; i, j 
�

≥ 0}, if a set of 
numbers πi > 0, i πi = 1 exist such that πiPij = πjPji 
for all i, j, then the chain is positive-recurrent and 
reversible and {πi; i ≥ 0} is the set of steady-state 
probabilities. 
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Suppose we sample the state of an M/M/1 queue at 
some time increment δ so small that we can ignore 
more than one arrival or departure in an increment. 
The rate of arrivals is λ and that of departures is 
µ > λ. 

✓✏ 
λδ ✓✏ 

λδ ✓✏ 
λδ  

 
λδ

✒✑ ③ ✒ ③ ③
0 ② 1 ✑② ✒2 ✑② 3   

✓✏
 

❖ µδ ❖ µδ ❖ µδ 
✒✑

❖ µδ 

Either from the guessing theorem or the general 
result for birth/death chains, we see that πn  = −1λδ
πnµδ so, with ρ = λ/µ, 

n n πn = ρπn ; −1 πn = ρ π0; πn = (1 − ρ)ρ

Curiously, this does not depend on δ (so long as (λ+ 
µ)δ ≤ 1), so these are the steady state probabilities 
as δ → 0.
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Thm: πiPij = πjPji for all i, j implies reversibility with 
{πi} steady-state. 

Pf: Sum over
�

 i to get 
�

i πiPij = πj i Pji = πj. These 
(along with i πi = 1 and πi ≥ 0) are

�

 the steady state 
equations and have a unique, positive solution. 

Sanity checks for reversibility: 1) If Pij > 0 then 
Pji > 0. 2) If periodic, period is 2. 3) PijPjkPki = 
PikPkjPji. 

Generalization of guessing thm to non-reversible 
chains: If ∃{πi ≥ 0; i ≥ 0} with i πi = 1 and ∃ tran­
sition probabilites {P ∗} such that

�

 πiPij = πij jPj
∗
i for 

all i, j, then {πi; i ≥ 0} are steady-state probabilities 
and {Pij

∗} are the backward probabilities. 
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In the original (right-moving) chain, the state in­
creases on arrivals and decreases on departures. 

Each sample path corresponds to both a right and 
left moving chain, each M/M/1 
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Burke’s thm: Given an M/M/1 sample-time Markov 

chain in steady state, first, the departure process 

is Bernoulli at rate λ. Second, the state at nδ is 

independent of departures prior to nδ. 

When we look at a sample path from right to left, 

each departure becomes an arrival and vice-versa. 

The right to left Markov chain is M/M/1. 

Thus everything we know about the M/M/1 sample-

time chain has a corresponding statement with time 

reversed and arrival-departure switched. 

8 



Branching processes 

A branching process is a very simple model for study­
ing how organisms procreate or die away. It is a 
simplified model of photons in a photomultiplier, 
cancer cells, insects, etc. 

Let Xn be the number of elements in generation 
n. For each element k, 1 ≤ k  Xn, let Yk,n be the 
number of offspring of that 

≤
element. Then 

Xn

Xn+1 =
� 

Yk,n 
k=1 

The nonnegative integer rv’s Yk,n are IID over both 
n and k. 

The initial generation X0 can be an arbitrary positive 
rv, but is usually taken to be 1. 
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X =
�Xn

n+1 Yk,n 
k=1 

Examples: If Yk,n is deterministic and Yk,n = 1, then 
Xn = Xn 1 = X0 for all − n ≥ 1. 

If Yk,n = 2, then Xn = 2Xn−1 = 2nX0 for all n ≥ 1. 

If pY (0) = 1/2 and pY (2) = 1/2, then {Xn; n ≥ 0} is 
a rather peculiar Markov chain. It can grow explo­

sively, or it can die out. If it dies out, it stays dead, 
so state 0 is a trapping state. 

The state 0 is a trapping state in general. The 
even numbered states all communicate (but, as we 
will see, are all transient), and each odd numbered 
state does not communicate with any other state. 
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Let h(z) = 
�

k p
k

kz . Then F10(n) = h(F10(n − 1). 

We see that F10(∞) < 1 in case (a) and F10(∞) = 1 
in case (b). For case (a), h�(z)z=1 = Y > 1 and in 
case (b), h�(z)z=1 = Y ≤ 1. 

For case a), the process explodes (with probability 
1 − F10(∞)) or dies out (with probability F10(∞)). 
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Let’s find the probability (for the general case) that 

the process dies out. Let 

pY (k) = pk and Pr{Xn =j | Xn 1=i} = − Pij. 

Let Fij(n) be the probability that state j is reached 

on or before step n starting from state i. Then 
 

Fij(n) = Pij + 
�

PikFkj(n − 1), n > 1; Fij(1) = Pij. 
k=j

∞
F k
10(n) = p0 + pk[F10(n  1)]  

k

�

=1 

−

= 
�∞

pk[F10(n − 1)]k. 
k=0 

Let h(z) = 
� k

k pkz . Then F10(n) = h(F10(n − 1). 
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U1 U2 U3 U4 
�✒ �✒ �✒ �✒ � � � �

� � � � 
� � � � 

X0 ✲X 1 ✲X 2 ✲X 3 ✲ 

Markov processes 

A countable-state Markov process can be viewed 
as an extension of a countable-state Markov chain. 
Along with each step in the chain, there is an ex­
ponential holding time Ui before the next step into 
state Xi. 

The rate of each exponential holding time Ui is de­
termined by Xi 1 but is otherwise independent of −
other holding times and other states. The depen­

dence is as illustrated below. 

Each rv Un, conditional on Xn 1, is independent of −
all other states and holding times. 
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The evolution in time of a Markov process can be 
visualized by 

rate νi 
U1 

X0 = i 
✲

rate νj 
✛ U2 

X1 = j 
✲

rate νk 
✛ U3 

X2 = k 
✲✛ 

0 X(t) = i S1 X(t) = j S2 X(t) = k S3 

We will usually assume that the embedded Markov 
chain for a Markov process has no self-transitions, 
since these are ‘hidden’ in a sample path of the 
process. 

The Markov process is taken to be {X(t); t ≥ 0}. 
Thus a sample path of Xn; n ≥ 0 and {Un; n ≥ 1}
specifies {X(t); t ≥ 0} and vice-versa. 

Pr{X(t)=j | X(τ )=i, {X(s); s < τ }} = 

= Pr{X(t−τ)=j | X(0)=i} . 
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λ λ 

✓✏ 
1 ✓✏ λ+µ λ+µ 

✒✑ ✒✑
   ③ ③ ③

0 ② 1 ② 2 ② 3  

✓✏ ✏
✒✑ 

✓
 

µ µ µ 
λ+µ λ+µ λ+µ 

✒✑

✓✏
✒✑

 
λ ✓✏ 

λ 
③✓✏ 

λ 
 ✒✑

 
λ 

③✒✑  ③
0 ② 1 ② 2 ② 3   

✓✏
✒✑ 

❖ µ ❖ µ ❖ µ ❖ µ 

The M/M/1 queue 

This diagram gives the embedded Markov chain for 

the M/M/1 Markov process. The process itself can 

be represented by 

This corresponds to the rate of transitions given a 

particular state. 
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