
6.262: Discrete Stochastic Processes 2/21/11 

Lecture 6: From Poisson to Markov 

Outline: 

• Joint conditional densities for Poisson 

• Definition of finite-state Markov chains


• Classification of states 

• Periodic states and classes 

• Ergodic Markov chains 
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Recall (Section 2.2.2) that the joint density of in­
terarrivals X1, . . . , Xn and arrival epoch Sn+1 is 

+1 fX ···X S ( nx = exp(
n 1, . . . x , λ

1 n sn+1)  −λsn +1 n+1)

Conditional on Sn+1 = t (which is Erlang), 

+1λn e−λt n! 
f (X X S x1, . . . x  =

1··· n| n
n+1

|t) = �  (1) 
λn+1tn λt ne−

�
 t

n! 

Similarly (from Eqn. 2.43, text) 

 λn+1e−λt  
f ( )(x1, . . . xX n1···Xn|N t |n) = � 

λn+1tne−λt 

n! 

� n!
 = (2) 

tn 

 
Both equations are for 0 < x1, . . . , xn and 

Both say the conditional density is uniform

�
xk < t. 

 over the 
constraint region. 
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Why are the two equations the same? If we condi­
tion X1, . . . , Xn on both N(t) = n and Sn+1 = t1 for 
any t1 > t, (2) is unchanged. 

By going to the limit t1 → t, we get the first equa­
tion. The result, n!/tn , is thus the density condi­
tional on n arrivals in the open interval (0, t) and is 
unaffected by future arrivals. 

This density, and its constraint region, is symmetric 
in the arguments x1, . . . , xn. More formally, the con­
straint region (and trivially the density in the con­
straint region) is unchanged by any permutation of 
x1, . . . , xn. 

Thus the marginal distribution, F ( )(x| k  
k N t |n) is the X

same for 1 ≤ k 
 
≤ n. From analyzing S1 = X1, we then 

know that Fc (x |n) = (t − x )n/tn 
k n for 1 ≤ k ≤ n.

Xk|N(t)
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For the constraint Sn+1 = t, we have analyzed X1, . . . , Xn, 

but have not considered Xn+1, the final interarrival 

interval before t. 

ason n+1The re  is that 
�

Xk = Sk=1 n+1 = t, so that these 

variables do not have an n+1 dimensional density. 

The same uniform density as before applies to each 

subset of n of the n+1 variables, and the constraint 

is symmetric over all n + 1 variables. 

This also applies to the constraint N(t) = n, using 

X∗ = t − Snn+1 

4




Definition of finite-state Markov chains


Markov chains are examples of integer-time stochas­
tic processes, {Xn; n ≥ 0} where each Xn is a rv. 

A finite-state Markov chain is a Markov chain in 
which the sample space for each rv Xn is a fixed 
finite set, usually taken to be {1, 2, . . . , M}. 

Any discrete integer-time process is characterized

by Pr{Xn = j | Xn−1=i, Xn−2=k, . . . , X0=m} for n ≥ 0 
and all i, j, k, . . . , m, each in the sample space. 

For a finite-state Markov chain, these probabilities 
are restricted to be 

Pr{Xn = j | Xn−1=i, Xn−2=k . . . X0=m} = Pij 

where Pij depends only on i, j and pX (m) is arbitrary. 
0
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The definition first says that Xn depends on the 
past only through Xn 1, and second says that the −
probabilities don’t depend on n for n ≥ 1. 

Some people call this a homogeneous Markov chain 
and allow Pij to vary with n in general. 

The rv’s {Xn; n ≥ 0} are dependent, but in only a 
very simple way. Xn is called the state at time n 
and characterizes everything from the past that is 
relevant for the future. 

A Markov chain is completely described by {Pij; 1 ≤
i, j ≤ M} plus the initial probabilities pX (i). 

0

We often take the initial state to be a fixed value, 
and often view the Markov chain as just the set 
{Pij; 1 ≤ i, j ≤ M}, with the initial state viewed as a 
parameter. 
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Sometimes we visualize {Pij} in terms of a directed 

graph and sometimes as a matrix. 

⎣
�� �� ��� �� �

⎦
a) Graphical b) Matrix 

The graph emphasizes the possible and impossible 

(an edge from i to j explicitly means that Pij > 0). 

The matrix is useful for algebraic and asymptotic 

issues. 
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Classification of states


Def: An (n-step) walk is an ordered string of nodes 
(states), say (i0, i1, . . . in), n ≥ 1, with a directed arc 
from im−1 to im for each m, 1 ≤ m ≤ n. 

Def: A path is a walk with no repeated nodes. 

Def: A cycle is a walk in which the last node is the 
same as the first and no other node is repeated. 

Walk: (4, 4, 1, 2, 3, 2) 

Walk: (4, 1, 2, 3)

Path: (4, 1, 2, 3)


Path: (6, 3, 2) 

�� �� (2, 3, � Cycle: 2)

Cycle: (5, 5) 

It doesn’t make any difference whether you regard

(2, 3, 2) and (3, 2, 3) as the same or different cycles.
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Def: A state (node) j is accessible from i (i → j) if

a walk exists from i to j. 

Let  Pn = Pr{Xn = j | X0 = i}. Then if i, k, j is a walk, ij
Pik > 0 and 2 Pkj > 0, so P ≥ PikPkj > 0. ij 

Similarly, if there is an n-step walk starting at i and 
ending at j, then Pn > 0. ij

Thus if i → j, there is some n for which  Pn > 0. To ij
the contrary, if j is not accessible from i (i �→ j), 
then  Pn = 0 for all n ≥ 1. ij

i → j means that, starting in i, entry to j is possible,

perhaps with multiple steps. i �→ j means there is 
no possibility of ever reaching j from i. 

If i → j and j → k, then i → k. (Concatenate a walk

from i to j with a walk from j to k.) 
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Def: States i and j communicate (i ↔ j) if i → j and

j → i.

Note that if (i ↔ j) and (j ↔ k), then (i ↔ k).

Note that if (i ↔ j), then there is a cycle that con­

tains both i and j. 

Def: A class C of states is a non-empty set of states 
such that each i ∈ C communicates with every other 
j ∈ C and communicates with no j ∈/ C. 

 
1 = 2, 3

 
{C }

C2 = {4, 5}
C3 = {1} 

4 = 6C { }

Why is {6} a class 
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Def: A state i is recurrent if j → i for all j such

that i → j. (i.e., if no state from which there is no

return can be entered.) If a state is not recurrent, 
it is transient. 

2 and 3 are recurrent 

4 and 5 are transient


4 → 1, 5  1→ 1,  �→ 4, 5

6 and 1 also transient 

�� �� �
P54 

Thm: The states in a class are all recurrent or all 
transient. 

Pf: Assume i recurrent and let Si = {j : i → j}. By
recurrence, j → i for all j ∈ Si. Thus i ↔ j if and 
only if j ∈ Si, so Si is a class. Finally, if j ∈ Si, then 
j → k implies i → k and k → i → j, so j is recurrent.
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Periodic states and classes


Def: The period, d(i), of state i is defined as 

 ( nd i) = gcd{n : Pii > 0} 

If d(i) = 1, i is aperiodic. If d(i) > 1, i is periodic 
with period d(i). 

��	 �� ��


For example, P n 
44 > 0 for 

 = 4, 6, 8, 10; d(4) = 2


For state 7, P n  0 for 77 >

 = 6, 10, 12, 14; d(7) = 2 

Thm: All states in the same class have the same 
period. 

See text for proof. It is not very instructive.


12




A periodic class of states with period d > 1 can be 

partitioned into subclasses S1, S2, . . . , Sd so that for 

1 ≤ � < d, and all i ∈ S�, Pij > 0 only for j ∈ S�+1. For 

i ∈ Sd, Pij > 0 only for j ∈ S1. (see text) 

In other words, starting in a given subclass, the 

state cycles through the d subclasses. 
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Ergodic Markov chains


The most fundamental and interesting classes of 
states are those that are recurrent and aperiodic. 
These are called ergodic. A Markov chain with a 
single class that is ergodic is an ergodic Markov 
chain. 

Ergodic Markov chains gradually lose their memory 
of where they started, i.e., Pn goes to a limit πij j > 0 
as n → ∞, and this limit does not depend on the
starting state i. 

This result is also basic to arbitrary finite-state Markov 
chains, so we look at it carefully and prove it next 
lecture. 
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A first step in showing that Pn → πj is the much ij

weaker statement that Pn > 0 for all large enough ij

n. This is more a combinatorial issue than proba­

balistic, as indicated below. 

��
Starting in state 2, the state


��
at the next 4 steps is deter­


 �
� ministic. For the next 4 steps,


there   are two possible choices


then 3, etc. 

This hints at the following theorem: 

Thm: For an ergodic M state Markov chain, n P > 0 ij

for all i, j, and all 2 n ≥ (M − 1) + 1. 
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