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Lecture 6: From Poisson to Markov
Outline:

e Joint conditional densities for Poisson
e Definition of finite-state Markov chains
e Classification of states

e Periodic states and classes

e Ergodic Markov chains



Recall (Section 2.2.2) that the joint density of in-
terarrivals X,,..., X, and arrival epoch S, is

X1 XnS 1 (1, -+ Tn, Spp1) = APl exp(—As;,41)
Conditional on S, =t (which is Erlang),

le"'Xn|Sn—|—1(:U1’ T $n|t) — [)\n-l-ltne—)\t] — t_n (1)

Similarly (from Eqn. 2.43, text)
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Both equations are for O < zy,...,zn and )z < t.

Both say the conditional density is uniform over the
constraint region.



Why are the two equations the same? If we condi-
tion X;,..., X, on both N(t) =n and S, = t; for
any t1 >t, (2) is unchanged.

By going to the limit ¢; — t, we get the first equa-
tion. The result, n!/t", is thus the density condi-
tional on n arrivals in the open interval (0,¢) and is
unaffected by future arrivals.

This density, and its constraint region, is symmetric
in the arguments z,...,z,. More formally, the con-
straint region (and trivially the density in the con-
straint region) is unchanged by any permutation of
LlyeoosyLmys

Thus the marginal distribution, Fy v )(zgn) is the
same for 1 < k£ <n. From analyzing S; = X, we then

know that FE(HN(t)(ka) = (t —xp)"/t" for 1 < k < n.



For the constraint 5, ; = ¢, we have analyzed X;,..., X,
but have not considered X, ,,, the final interarrival
interval before t.

The reason is that ZZJ:F% X = Sp41 = t, so that these
variables do not have an n+1 dimensional density.

T he same uniform density as before applies to each
subset of n of the n+ 1 variables, and the constraint
IS symmetric over all n 4+ 1 variables.

This also applies to the constraint N(¢t) = n, using



Definition of finite-state Markov chains

Markov chains are examples of integer-time stochas-
tic processes, {X;; n > 0} where each X, is a rv.

A finite-state Markov chain is a Markov chain in
which the sample space for each rv X, is a fixed
finite set, usually taken to be {1,2,... M}.

Any discrete integer-time process is characterized
by PI’{Xn =7 | Xp_1=1,X,,_o>=k, ... ,onm} for n > O
and all 7,5, k,...,m, each in the sample space.

For a finite-state Markov chain, these probabilities
are restricted to be

Pr{Xn =3 | Xp_1=1,X,,_o=k... XOZm} = Pij
where P;; depends only on i, j and px, (m) is arbitrary.



The definition first says that X, depends on the
past only through X, _1, and second says that the
probabilities don’t depend on n for n > 1.

Some people call this a homogeneous Markov chain
and allow F;; to vary with n In general.

The rv's {X,; n > 0} are dependent, but in only a
very simple way. X, is called the state at time n
and characterizes everything from the past that is
relevant for the future.

A Markov chain is completely described by {F;;; 1 <
i,j < M} plus the initial probabilities px (7).

We often take the initial state to be a fixed value,
and often view the Markov chain as just the set
1P 1 <4, < M}, with the initial state viewed as a
parameter.



Sometimes we visualize {F;;} in terms of a directed
graph and sometimes as a matrix.
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The graph emphasizes the possible and impossible
(an edge from i to j explicitly means that F;; > 0).

The matrix is useful for algebraic and asymptotic
ISsues.




Classification of states

Def: An (n-step) walk is an ordered string of nodes
(states), say (ig,i1,...in), n > 1, with a directed arc
from ¢,,_1 to i, for each m, 1 <m < n.

Def: A path is a walk with no repeated nodes.

Def: A cycle is a walk in which the last node is the
same as the first and no other node is repeated.

P23 Pes Walk: (4, 4, 1, 2, 3, 2)
Pry Wwalk: (4, 1, 2, 3)
. Path: (4, 1, 2, 3)
Pas 63 Path: (6, 3, 2)
Pys . Pss Cycle: (2, 3, 2)
Cycle: (5, 5)

It doesn’t make any difference whether you regard
(2,3,2) and (3,2,3) as the same or different cycles.



Def: A state (node) j is accessible from i (¢ — j) If
a walk exists from : to j.

Let P”=Pr{Xn_g|XO_z} Then if ¢, k, 5 is a walk,
sz>0ande]>O SOP >Pkpkj>0

Similarly, if there is an n-step walk starting at : and
ending at j, then P,Lf'} > 0.

Thus if : — j, there is some n for which P,L?} > 0. To
the contrary, if j iIs not accessible from : (i 4~ j),
then P,Lf';: =0 for all n > 1.

: — 7 means that, starting in i, entry to j is possible,
perhaps with multiple steps. : 4~ 5 means there is
no possibility of ever reaching 5 from ..

If i —j and ;7 — k, then i — k. (Concatenate a walk
from i to j with a walk from j to k.)



Def: States i and j communicate (i < j) iIf ¢« — j and

] — 1.
Note that if (i <~ j) and (j < k), then (i < k).

Note that if (i — j), then there is a cycle that con-
tains both : and j.

Def: A class C of states is a non-empty set of states
such that each : € C commmunicates with every other
j € C and communicates with no j ¢ C.

b C1 ={2,3}
11 Co = {4, 5}
C3 = {1}
Cqs = {6}

Why is {6} a class
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Def: A state : is recurrent if ;j — ¢ for all 5 such
that : — j. (i.e., if no state from which there is no
return can be entered.) If a state is not recurrent,
it is transient.

P>3
3) Ps3 ® 2 and 3 are recurrent
P Ps,

4 and 5 are transient
4 —-1,5—-1,144,5
6 and 1 also transient

Thm: The states in a class are all recurrent or all
transient.

Pf: Assume : recurrent and let S, = {j : i — j}. BYy
recurrence, j — ¢ for all j € §;. Thus 7 «— 5 If and
only if j € §;, so §; is a class. Finally, if j € S;, then
7 — k implies : — k and £k — 1 — j, SO j IS recurrent.
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Periodic states and classes

Def: The period, d(:), of state i is defined as

d(i) = gcd{n : Py > 0}
If d(<) = 1, 7 is aperiodic. If d(i) > 1, i is periodic
with period d(7).
For example, P;, > 0 for
n=4,6,8, 10; d(4) =2
For state 7, P > 0O for
n =6, 10, 12, 14; d(7) =2

Thm: AIll states in the same class have the same
period.

See text for proof. It is not very instructive.
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A periodic class of states with period d > 1 can be
partitioned into subclasses §1,55,...,5,; so that for
1<{¢<d, and all : € Sy, F;; >0 only for j € §y11. For
i € Sq, P;j >0 only for j € S;. (see text)

In other words, starting in a given subclass, the
state cycles through the d subclasses.
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Ergodic Markov chains

The most fundamental and interesting classes of
states are those that are recurrent and aperiodic.
These are called ergodic. A Markov chain with a
single class that is ergodic is an ergodic Markov
chain.

Ergodic Markov chains gradually lose their memory
of where they started, i.e., P,Lf';- goes to a limit T > 0
as n — oo, and this limit does not depend on the
starting state :.

T his result is also basic to arbitrary finite-state Markov

chains, so we look at it carefully and prove it next
lecture.
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A first step in showing that PZ?} — m; IS the much
weaker statement that P,Lff; > 0 for all large enough
n. This iIs more a combinatorial issue than proba-
balistic, as indicated below.

Starting in state 2, the state

@/ at the next 4 steps is deter-
/® ministic. For the next 4 steps,
\@ : there are two possible choices
then 3, etc.

This hints at the following theorem:

Thm: For an ergodic M state Markov chain, Pg} >0
for all i,j, and all n > (M — 1)2 + 1.
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