
6.262: Discrete Stochastic Processes 2/28/11 

Lecture 8: Markov eigenvalues and eigenvectors 

Outline: 

•	 Review of ergodic unichains 

•	 Review of basic linear algebra facts


• Markov chains with 2 states


•	 Distinct eigenvalues for M > 2 states 

•	 M states and M independent eigenvectors 

• The Jordan form 
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Recall that for an ergodic finite-state Markov chain, 

the transition probabilities reach a limit in the sense 

that limn→∞ Pn = πj where �π = (π1, . . . , πM) is a ij
strictly positive probability vector. 

Multiplying both sides by Pjk and summing over j, 
 

πk = lim 
�  nP Pjk = →∞ ij πjPjk n  
j

�

j 

Thus �π is a steady-state vector for the Markov 

chain, i.e., �π = �π[P ] and �π ≥ 0. 

In matrix terms, limn→∞[Pn] = �e�π where �e = (1, 1, . . . , 1)T 

is a column vector and �π is a row vector. 
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The same result almost holds for ergodic unichains, 
i.e., one ergodic class plus an arbitrary set of tran­
sient states. 

The sole difference is that the steady-state vector is 
positive for all ergodic states and 0 for all transient 
states. 

 
[P ] T R

   

 [P ]  
PT


P11 · · · 1 t 

[P ] =   where [P  ] =  · · · · · ·  T · · ·



 

[0] [P ] PR t1 . . . Ptt

The idea is that each transient state eventually has 
a transition (via [PTR]) to a recurrent state, and 
the class of recurrent states lead to steady state as 
before. 
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Review of basic linear algebra facts 

Def: A complex number λ is an eigenvalue of a real 
square matrix [A], and a complex vector �v = 0 is a
right eigenvector of [A], if λ�v = [A]�v. 

For every stochastic matrix (the transition matrix of 
a finite-state Markov chain [P ]), we have 

�
j Pij = 1 

and thus [P ]�e = �e. 

Thus λ = 1 is an eigenvalue of an arbitrary stochas­

tic matrix [P ] with right eigenvector �e. 

An equivalent way to express the eigenvalue/eigenvector 
equation is that [P − λI]�v = 0 where I is the identity 
matrix. 
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For every stochastic matrix [P ], [P ]�e = �e and thus 

[P − I] is singular and there is a row vector π = 0 

such that �π[P ] = �π. 

This does not show that there is a probability vector 

�π such that �π[P ] = �π, but we already know there is 

such a probability vector (i.e., a steady-state vector) 

if [P ] is the matrix of an ergodic unichain. 

We show later that there is a steady-state vector π 

for all Markov chains. 
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Def: A square matrix [A] is singular if there is a 
vector �v = 0 such that [A]�v = 0.

Thus λ is an eigenvalue of [P ] if and only if (iff) 
[P − λI] is singular for some �v = 0. 

Let �a1, . . . , �aM be the the columns of [A]. Then [A] 
is singular iff �a1, . . . , �aM are linearly dependent. 

The square matrix [A] is singular iff the rows of [A] 
are linearly dependent and iff the determinant det[A] 
of [A] is 0. 

Summary: λ is an eigenvalue of [P ] iff [P − λI] is 
singular, iff det[P − λI] = 0, iff [P ]�v = λ�v for some 
�v = 0, and iff �u[P ] = λ�u for some �u = 0.
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Markov chains with 2 states 

π1P11 + π2P21 = λπ1 P11ν1 + P12ν2 = λν1 . 
π1P12 + π2P22 = λπ2 P21ν1 + P22ν2 = λν2 

left eigenvector right eigenvector 

det[P − λI] = (P11 − λ)(P22 − λ) − P12P21 

λ1 = 1; λ2 = 1 − P12 − P21 

If P12 = P21 = 0 (the chain has 2 recurrent classes), 

then λ = 1 has multiplicity 2. Otherwise λ = 1 has 

multiplicity 1. 

If P12 = P21 = 1 (the chain is periodic), then λ2 = 

−1. Otherwise |λ2| < 1. 
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The determinant of an M by M matrix can be de­
termined as 

� �M  
det A = ± Ai,µ(i) 

µ i=1 

where the sum is over all permutations µ of the 
integers 1, . . . , M. Plus is used for each even per­

mutation and minus for each odd. 

The important facet of this formula for us is that 
det[P − λI] must be a polynomial in λ of degree M. 

Thus there are M roots of the equation det[P −λI] = 
0, and consequently M eigenvalues of [P ]. 

Some of these M eigenvalues might be the same, 
and if k of these roots are equal to λ, the eigenvalue 
λ is said to have algebraic multiplicity k. 
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π1P11 + π2P21 = λπ1 P11ν1 + P12ν2 = λν1 .
π1P12 + π2P22 = λπ2 P21ν1 + P22ν2 = λν2 

λ1 = 1; λ2 = 1 − P12 − P21 

Assume throughout that either P12 > 0 or P21 > 0. Then 

π(1) 
�  

� = P21 , P12 (1) c 
P12+P21 P12+P21 �ν = (1 , 1)

 
�π(2) = (1, − c

1) 

�

�ν(2) = P12 , P21 

P12+P21 P12

−
+P21 

Note that (�π i) (�ν j) = δij. In general,

�

 if (�π i)[P ] =

�

 (λi�π
i) 

and [P ] (�ν i) = (  λ �ν i)
i for i = 1 (, . . . , M, then �π i) (�ν j) = 0 

if λi = λj. To see this, 

(i) (j) = (i)λi�π �ν �π [P ] (j)�ν = (i)�π ( (j) (i) (j) λj�ν ) = λj�π �ν

so if λi = λj, then �πi�νj = 0. Normalization (of either 
�πi or �νi) can make �πi�νi = 1 for each i. 
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Note that the equations 
(i) (i) (i) (i) (i) (P11ν + = 1 P12ν λiν ; 1 P21ν + = i) 

2 1 P22ν2 λiν2

can be rewritten in matrix form as 

[P ][U] = [U][Λ] where 

�    (1) (2) λ
[Λ] = 1 0 

�
ν

and [U] = 



 1 ν1  ,
0 λ (1) (2) 2 ν2 ν2 



Since ( )π i) (� �ν j = δij, we see that 

 

 
(1) (1) π π 1 2
(2) (2) π1 π2

   
(1) (2) 

   ν 1 ν1  = [I], (1) (2) ν2 ν2



so [ ] is invertible and [ −1 (1)U U ] has 



 �π and (2) �π as 
rows. Thus [P ] = [U][Λ][U−1] and 

[ 2P ] = [U][Λ][U−1][U][Λ][ 1 2 1U− ] = [U][Λ ][U− ] 
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M
[ nP ] = 

�  n (i) (i) λi �ν �π
i=1 

π(1) 
�  

� = P21 , P12  
P12+P21 P12+P21 �ν(1) = (1, 1)c

 c 
�π(2) = (1, −1) 

�

�ν(2) = P12 , P21 

P12+P21 P12

−
+P21 

The steady-state vector is �π = (1)�π

�

 and 

�

 
(1)

� 
π1 π

 2 (2) (2) �ν �π = �ν �π = 
π1 π2 

� �  
π2 −π2 
−π1 π1 

�

 
  

n
� 

π1 + π2λn π − π λn
[P ] = 2 2 2 2 

π1 − π1λn + n 
2 π2 π1λ2 

�

We see that [Pn] converges to �e �π, and the rate 
of convergence is λ2. This solution is exact. It 
essentially extends to arbitrary finite M. 
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Similarly, for any n ≥ 2, 

[ n] = [ ][Λn 1P U ][U− ] (1) 

Eq. 3.29 in text has a typo and should be (1) above. 

We can solve (1) in general (if all M eigenvalues are 
distinct) as easily as for M = 2. 

Break [Λ]n into M terms, 

[Λ]n = [Λn n 
1] + · · · + [ΛM] where

[Λn] has λn in position (i, i)   and has zeros elsewhere. i i
Then 

M

[ nP ] = 
� n (i) (i) λi �ν �π
i=1 
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Distinct eigenvalues for M > 2 states 

Recall that, for an M state Markov chain, det[P −λI] 
is a polynomial of degree M in λ. It thus has M roots 
(eigenvalues), which we assume here to be distinct. 

Each eigenvalue λi has a right eigenvector (�ν i) and 
a left eigenvector (i) (�π . Also �π i) (�ν j) = 0 for each 
i, j = i.

By scaling (�ν i) or (�π i), we can satisfy (�π i) ( )�ν i = 1. 

Let [U] be the matrix with columns (1) �ν to (M) �ν and 
let [ (1) (M)V ] have rows �π to �π . 

Then [V ][U] = I, so [V ] = [U−1]. Thus the eigenvec­
tors (1) �ν to (M) �ν are linearly independent and span 
M space. Same with (1) �π to (M)�π . 
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�

Putting the right eigenvector equations together, 
[P ][U] = [U][Λ]. Postmultiplying by [U−1], this be­

comes 

[P ] = [U][Λ][U−1] 

[ nP ] = [U][Λn][U−1] 

Breaking [Λn] into a sum of M terms as before, 

[ nP ] = 
i

�M  n (i) (i) λi �ν �π
=1 

Since each row of [P ] sums to 1, �e is a right eigen­
vector of eigenvalue 1. 

Thm: The left eigenvector �π of eigenvalue 1 is a 
steady-state vector if it is normalized to �π�e = 1 . 
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Thm: The left eigenvector �π of eigenvalue 1 is a 
steady-state vector if it is normalized to �π�e = 1 . 

Pf: There must be a left eigenvector �π for eigen­
value 1. For every j, 1 ≤ j ≤ M, πj = 

�
k πkPkj. Tak­

ing magnitudes, 
 

|πj| ≤ 
�

|πk|Pkj (2) 
k 

with equality iff π� = |πj|  
j eiφ for all j and some φ. 

Summing over j, j |πj| ≤ 
�

k |πk|. This is satisfied 
with equality, so (2) is satisfied with equality for 
each j. 

Thus (|π1|, |π2|, . . . , |πM| is a nonnegative vector satis­
fying�  the steady-state vector equation. Normalizing 
to j |πj| = 1, we have a steady-state vector. 

15 

Thm: Every eigenvalue λ� satisfies |λ�| ≤ 1. 

Pf: We have seen that if (�π �) is a left eigenvec­
tor of [P ] with eigenvalue λ�, then it is also a left 
eigenvector of [ n] with eigenvalue n P λ . Thus � 

 n (�) ( )λ π = �  �  

� n π  Pij for all j. j i
i 

 
| n (�) (�) n λ� | |πj | ≤ 

�
|πi |  Pij for all j. 

i 

(
Let β �)

be the largest of |π | over j. For that maxi-j 
mizing j, 

 
| nλ� | β ≤ β n Pij ≤ βM 

i 

Thus |λn 

�

� | ≤ M for all n, so |λ�| ≤ 1. 
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M states and M independent eigenvectors 

Next assume that one or more eigenvalues have 
multiplicity greater than 1, but that if an eigenvalue 
has multiplicity k, then it has k linearly independent 
eigenvectors. 

We can choose the left eigenvectors of a given 
eigenvalue to be orthonormal to the right eigen­

vectors of that eigenvalue. 

After doing this and defining [U] as the matrix with 
columns (1)�ν , . . . , (M)�ν , we see [U] is invertible and 
that [U−1) is the matrix with rows (1)�π , . . . , (M)�π . We 
then again have 

M

[ nP ] = 
� n (i) (i) λi �ν �π
i=1 

18 

These two theorems are valid for all finite-state 
Markov chains. For the case with M distinct eigen­
values, we have 

�M  
[ nP ] = n (i) (i) λi �ν �π

i=1 

If the chain is an ergodic unichain, then one eigen­
value is 1 and the rest are strictly less than 1 in 
magnitude. 

Thus the rate at which [Pn] approaches �e�π is deter­
mined by the second largest eigenvalue. 

If [P ] is a periodic unichain with period d, then there 
are d eigenvalues equally spaced around the unit 
circle and [Pn] does not converge. 

17 



The Jordan form 

Unfortunately, it is possible that an eigenvalue of 
algebraic multiplicity k ≥ 2 has fewer than k linearly 
independent eigenvectors. 

The decomposition [P ] = [U][Λ][U−1] can be replaced 
in this case by a Jordan form, [P ] = [U][J][U−1] where 
[J] has the form 

  
λ1 0 0 0 0 

 0 λ1 0 0 0 
[J] = 0 0 λ2 1 0 



 .
 0 0 0  λ2 0 
0 0 0 0 λ2 




The eigenvalues are on the main diagonal



 and ones 
are on the next diagonal up where needed for defi­

cient eigenvectors. 
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Example: Consider a Markov chain consisting of � 

ergodic sets of states. 

Then each ergodic set will have an eigenvalue equal 

to 1 with a right eigenvector equal to 1 on the states 

of that set and 0 elsewhere. 

There will also be a ‘steady-state’ vector, nonzero 

only on that set of states. 

Then [Pn] will converge to a block diagonal matrix 

where for each ergodic set, the rows within that set 

are the same. 

19 



Example: 
  

1/2 1/2 0 
[P ] =  0 1/2 1/2 



0


 . 

0 1 

The eigenvalues are 



1 and 1/2, with



 algebraic mul­

tiplicity 2 for λ = 1/2. 

There is only one eigenvector (subject to a scaling 

constant) for the eigenvalue 1/2. [Pn] approaches 

steady-state as n(1/2)n . 

Fortunately, if [P ] is stochastic, the eigenvalue 1 al­

ways has as many linearly independent eigenvectors 

as its algebraic multiplicity. 
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