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Lecture 8: Markov eigenvalues and eigenvectors
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Recall that for an ergodic finite-state Markov chain,
the transition probabilities reach a limit in the sense
that lim,. P} = m; where 7 = (71,...,7m) IS a
strictly positive probability vector.

Multiplying both sides by P;;, and summing over j,

T = n||—>mooZPijPJk = Z’]T]P]k
J J

Thus 7 is a steady-state vector for the Markov
chain, i.e., 7 = #[P] and 7 > 0.
In matrix terms, lim,_[P"] = éx wheree = (1,1,...,1)T

is a column vector and 7 is a row vector.



The same result almost holds for ergodic unichains,
i.e., one ergodic class plus an arbitrary set of tran-
sient states.

The sole difference is that the steady-state vector is
positive for all ergodic states and O for all transient
states.
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o | el

Py Py
where [Pr]=| --- A
Pi ... Pu

The idea is that each transient state eventually has
a transition (via [Prg]) to a recurrent state, and
the class of recurrent states lead to steady state as
before.

Review of basic linear algebra facts

Def: A complex number ) is an eigenvalue of a real
square matrix [A], and a complex vector v #= 0O is a
right eigenvector of [A], if \v = [A]v.

For every stochastic matrix (the transition matrix of
a finite-state Markov chain [P]), we have }_,; P;; =1
and thus [P]é=¢.

Thus A =1 is an eigenvalue of an arbitrary stochas-
tic matrix [P] with right eigenvector é.

An equivalent way to express the eigenvalue/eigenvector
equation is that [P — \I]v = 0 where I is the identity
matrix.



Def: A square matrix [A] is singular if there is a
vector v # 0 such that [A]7 = 0.

Thus X is an eigenvalue of [P] if and only if (iff)
[P — M\I] is singular for some ¢ # 0.

Let d1,...,dpm be the the columns of [A]. Then [A]
is singular iff dq,... ,adp are linearly dependent.

The square matrix [A] is singular iff the rows of [A]
are linearly dependent and iff the determinant det[A]
of [A] is 0.

Summary: )\ is an eigenvalue of [P] iff [P — \I] is
singular, iff det[P — \I] = 0, iff [P]g = \J for some
v # 0, and iff 4[P] = \ud for some u #= 0.

For every stochastic matrix [P], [P]e¢ = & and thus
[P — I] is singular and there is a row vector m = 0
such that 7[P] = 7.

This does not show that there is a probability vector
7 such that 7#[P] = #, but we already know there is
such a probability vector (i.e., a steady-state vector)
if [P] is the matrix of an ergodic unichain.

We show later that there is a steady-state vector =
for all Markov chains.



The determinant of an M by M matrix can be de-
termined as

M
w =1

where the sum is over all permutations p of the
integers 1,... /M. Plus is used for each even per-
mutation and minus for each odd.

The important facet of this formula for us is that
det[P — A\I] must be a polynomial in \ of degree M.

Thus there are M roots of the equation det[P—-\I] =
0, and consequently M eigenvalues of [P].

Some of these M eigenvalues might be the same,
and if k of these roots are equal to )\, the eigenvalue
A is said to have algebraic multiplicity k.

Markov chains with 2 states

w1 P11+ mPo1 = Amy Piiva + Piovo = Arg
m1P1o + mPoy = Amop Poiv1 + Poovo = Avp
left eigenvector right eigenvector

det[P — XI] = (P11 — A) (P22 — A) — P1oPoy

A1 =1 A2=1—-Pip— P

If Pio = P>1 = 0 (the chain has 2 recurrent classes),
then A = 1 has multiplicity 2. Otherwise A = 1 has
multiplicity 1.

If Pi = P>; = 1 (the chain is periodic), then )\, =
—1. Otherwise |\,| < 1.



m P11+ mPy1 = Am Piiv1 4+ Piovp = g
m1P1o + 7P = Amo Pyiv1 4+ Poovp = Avp

A1 =1, A=1—-Po—Pxn
Assume throughout that either P;> > 0 or P>; > 0. Then

=(1 — P, P, i

= (pmma ﬁ) 7= (1, 1)°

2(2) — 1. —1 =(2 — Py — Py c
T 1, -1) 7@ = <P12+P21’ P12+P21)

Note that #()5() = 5,;. In general, if 7O[P] = \;7()
and [P]7() = x\;7®) for i=1,...,M, then 770 =0
if \; # \;. To see this,

27O ) = 72O p1p) = ﬁ(i)()\jﬁ(j)) — Ajﬁ(i),j(j)

so if \; # )\, then 7;7; = 0. Normalization (of either
w; or ;) can make 7;7; = 1 for each 1.

Note that the equations
Plll/( ) + P V( D= =\ V( ) P21V§i) + ngyg) = )\il/éi)
can be rewritten in matrix form as

[P][U] = [U][A] where
1 (2
[A]:lAOl AOQ] and [U] = Vh) V%Q)]
vy o V3

since #(W70) = §,;, we see that

R R

so [U] is invertible and [U—l] has #(1) and #(2) as
rows. Thus [P] = [U][A][U~1] and

[P?] = [V VNN = [UTIA2] U]
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Similarly, for any n > 2,

[P"] = [UIA™[U1] (1)
Eqg. 3.29 in text has a typo and should be (1) above.
We can solve (1) in general (if all M eigenvalues are
distinct) as easily as for M = 2.
Break [A]" into M terms,

[A]" = [AT] + -+ [AM] where

[A?] has A in position (i,7) and has zeros elsewhere.
Then

M . .
[P = 3 Az
=1
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P = M 070

=(1 — P, Py -

7 = (P12+P21’ P12+P21) v = (1, 1)°

=(2) =(1. —1 —=(2 — Py —Pn ¢
T @, -1) 7@ = <P12+P21’ P12+P21)

The steady-state vector is 7 = #(1) and

g<2>ﬁ<2):[ > _7@]

D= — [Wl )
—-my T

m™ T2

[Pn] — | ™ + 71'2)\8 ™ — 772)‘3
T — TS T2 + T A5
We see that [P"] converges to ¢7, and the rate
of convergence is )\>. This solution is exact. It
essentially extends to arbitrary finite M.
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Distinct eigenvalues for M > 2 states

Recall that, for an M state Markov chain, det[P —\I]
is a polynomial of degree M in \. It thus has M roots
(eigenvalues), which we assume here to be distinct.

Each eigenvalue ); has a right eigenvector 7V and
a left eigenvector #(9. Also #(M37(l) = 0 for each

ij# .
By scaling 7Y or #(9), we can satisfy 701 = 1.

Let [U] be the matrix with columns #1) to (M) and
let [V] have rows #(1) to #(M),

Then [V][U] =1, so [V] = [U~1]. Thus the eigenvec-
tors 7(1) to (M) are linearly independent and span
M space. Same with 7#(1) to #(M),
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Putting the right eigenvector equations together,
[P][U] = [U][A]. Postmultiplying by [U~1], this be-
comes

[P] = [U]A][U1]

[P"] = [U]IA"]IU 1]

Breaking [A"] into a sum of M terms as before,

(P = 3 ApO70
i=1
Since each row of [P] sums to 1, ¢ is a right eigen-
vector of eigenvalue 1.

—

Thm: The left eigenvector @ of eigenvalue 1 is a
steady-state vector if it is normalized to 7e=1 .
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—

Thm: The left eigenvector © of eigenvalue 1 is a
steady-state vector if it iIs normalized to 7e=1 .

Pf. There must be a left eigenvector 7@ for eigen-
value 1. For every j, 1 <j <M, m; = >} mPp;. Tak-
ing magnitudes,

[mi| < || Pry (2)
2

with equality iff ; = |r;|¢’® for all j and some ¢.
Summing over j, Y ;|m;| < ¥ |m;|. This is satisfied
with equality, so (2) is satisfied with equality for
each j.

Thus (|71|,|72],... ,|T™m]| IS @ nonnegative vector satis-
fying the steady-state vector equation. Normalizing
to Y, |m;| = 1, we have a steady-state vector.
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Thm: Every eigenvalue )\, satisfies |\, < 1.

Pf: We have seen that if #(Y) is a left eigenvec-
tor of [P] with eigenvalue ),, then it is also a left
eigenvector of [P"] with eigenvalue )\}. Thus

M = S aOpr  for all j.
i
A7 |7TJ(-£)| < Z|7ri(£)|P{} for all j.

i
Let 3 be the largest of \wj(-f)\ over j. For that maxi-
mizing j,

18 < D BP} <pM
i

Thus [A}| <M for all n, so [\ <1.
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These two theorems are valid for all finite-state
Markov chains. For the case with M distinct eigen-
values, we have

[MZ%WMW)
i=1
If the chain is an ergodic unichain, then one eigen-
value is 1 and the rest are strictly less than 1 in
magnitude.

Thus the rate at which [P"] approaches &7 is deter-
mined by the second largest eigenvalue.

If [P] is a periodic unichain with period d, then there
are d eigenvalues equally spaced around the unit
circle and [P"] does not converge.
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M states and M independent eigenvectors

Next assume that one or more eigenvalues have
multiplicity greater than 1, but that if an eigenvalue
has multiplicity k, then it has k linearly independent
eigenvectors.

We can choose the left eigenvectors of a given
eigenvalue to be orthonormal to the right eigen-
vectors of that eigenvalue.

After doing this and defining [U] as the matrix with
columns 71 ... (M) we see [U] is invertible and
that [U—1) is the matrix with rows #(1) ... 7#(M) e
then again have

M . .
P =3 Arp@z®
i=1
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Example: Consider a Markov chain consisting of /
ergodic sets of states.

Then each ergodic set will have an eigenvalue equal
to 1 with a right eigenvector equal to 1 on the states

of that set and 0 elsewhere.

There will also be a ‘steady-state’ vector, nonzero
only on that set of states.

Then [P"] will converge to a block diagonal matrix
where for each ergodic set, the rows within that set
are the same.
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The Jordan form

Unfortunately, it is possible that an eigenvalue of
algebraic multiplicity £ > 2 has fewer than & linearly
independent eigenvectors.

The decomposition [P] = [U][A][U1] can be replaced
in this case by a Jordan form, [P] = [U][J][U~1] where
[J] has the form
A 0O0O0O
0OX 00O
[J] = |0 0X10O0
0 0O0XO0
0 00 0\

The eigenvalues are on the main diagonal and ones
are on the next diagonal up where needed for defi-
cient eigenvectors.
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Example:

1/2 1/2 0
[Pl=] 0 1/2 1/2
0o 0 1

The eigenvalues are 1 and 1/2, with algebraic mul-
tiplicity 2 for A = 1/2.

There is only one eigenvector (subject to a scaling
constant) for the eigenvalue 1/2. [P"] approaches
steady-state as n(1/2)".

Fortunately, if [P] is stochastic, the eigenvalue 1 al-

ways has as many linearly independent eigenvectors
as its algebraic multiplicity.
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