
Theorem: If {Zn; n ≥ 1} converges to α WP1, (i.e., 
Pr{ω : limn(Zn(ω)−α) = 0} = 1), and f(x) is continu­
ous at α. Then Pr{ω : limn f(Zn(ω)) = α} = 1. 
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Lecture 12 : Renewal rewards, stopping trials, and 

Wald’s equality 

Outline: 

•	 Review strong law for renewals


• Review of residual life


•	 Time-averages for renewal rewards 

•	 Stopping trials for stochastic processes 

•	 Wald’s equality 

•	 Stop when you’re ahead 
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The strong law for renewal processes follows from 

this relation between n/Sn and N(t)/t. 

Theorem: For a renewal process with X < ∞, 

Pr
�
ω : lim N(t, ω)/t = 1/X 

�
= 1. 

t→∞ 

This says that the rate of renewals over the infinite 

time horizon (i.e., limt N(t)/t) is 1/X WP1. 

This also implies the weak law for renewals, 
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Review of residual life 

Def: The residual life Y (t) of a renewal process at 
time t is the remaining time until the next renewal, 
i.e., Y (t) = SN(t)+1 − t. 

Residual life is a random process; for each sample 
point ω, Y (t, ω) is a sample function. 
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Going to the limit t →∞ 
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This is infinite if E 2X = ∞. Think of example 
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Time-averages for renewal rewards 

Residual life, age, and duration are examples of as­
signing rewards to renewal processes. 

The reward R(t) at any time t is restricted to be a 
function of the inter-renewal period containing t. 

In simplest form, R(t) is restricted to be a function 
R(Z(t), X(t)). 

The time-average

�

 for a sample path of R(t) is found 
by analogy to residual life. Start with the nth inter-
renewal interval. 

 Sn(ω) 
Rn(ω) = 

�
R(t, ω) dt 

Sn 1(ω) −

Interval 1 goes from 0 to S1, with Z(t) = t. For 
interval n, Z(t) = t − Sn 1, i.e., − SN(t) = Sn−1. 
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n
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Xn. Thus 
  ∞ x 

E [Rn] = R(z, x) dz dFX(x). 
x=0 z=0 

Assuming that this expectation exists, 

1 � t E [Rn]
lim R(τ ) dτ = WP1 

t→∞ t τ =0 X 
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Example: Suppose we want to find the kth moment 

of the age. 

Then R(Z(t), X�(t)) = Zk(t). Thus

E [Rn] = 
� ∞ � x 

kz dz dFX(x) 
x=0 z=0 

� ∞ +1 xk 1 
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Stopping trials for stochastic processes 

It is often important to analyze the initial segment 

of a stochastic process, but rather than investigat­

ing the interval (0, t] for a fixed t, we want to inves­

tigate (0, t] where t is selected by the sample path 

up until t. 

It is somewhat tricky to formalize this, since t be­

comes a rv which is a function of {X(t); τ ≤ t}. This 

approach seems circular, so we have to be careful. 

We consider only discrete-time processes {Xi; i ≥ 1}. 
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Let J be a positive integer rv that describes when 
a sequence X1, X2, . . . , is to be stopped. 

At trial 1, X1(ω) is observed and a decision is made, 
based on X1(ω), whether or not to stop. If we stop, 
J(ω) = 1 

At trial 2 (if J(ω) = 1), X2(ω) is observed and a
decision is made, based on X1(ω), X2(ω), whether 
or not to stop. If we stop, J(ω) = 2. 

At trial 3 (if J(ω) = 1, 2), X3(ω) is observed and
a decision is made, based on X1(ω), X2(ω), X3(ω), 
whether or not to stop. If we stop, J(ω) = 3, etc. 

At each trial n (if stopping has not yet occurred), 
Xn is observed and a decision (based on X1 . . . , Xn) 
is made; if we stop, then J(ω) = n. 

11 

�

�

Def: A stopping trial (or stopping time) J for {Xn; n ≥
1}, is a positive integer-valued rv such that for each 
n ≥ 1, the indicator rv I     {J=n is a function of} 
{X1, X2, . . . , Xn}. 

A possibly defective stopping trial is the same ex­
cept that J might be defective. 

We visualize ‘conducting’ successive trials X1, X2, . . . , 
until some n at which the event {J = n} occurs; fur­
ther trials then cease. It is simpler conceptually to 
visualize stopping the observation of trials after the 
stopping trial, but continuing to conduct trials. 

Since J is a (possibly defective) rv, the events {J = 
1}, {J = 2}, . . . are disjoint. 
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Suppose the rv’s Xi in a process {Xn; n ≥ 1 have 

a finite number of possible sample values. Then 

any (possibly defective) stopping trial J can be rep­

resented as a rooted tree where the trial at which 

each sample path stops is represented by a terminal 

node. 

Example: X is binary and stopping occurs when the 

pattern (1, 0) first occurs. ��

14 

Example 1: A gambler goes to a casino and gambles 

until broke. 

Example 2: Flip a coin until 10 successive heads 

appear. 

Example 3: Test an hypothesis with repeated tri­

als until one or the other hypothesis is sufficiently 

probable a posteriori. 

Example 4: Observe successive renewals in a re­

newal process until Sn ≥ 100. 
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Wald’s equality 

Theorem (Wald’s equality) Let {Xn; n ≥ 1} be a se­
quence of IID rv’s, each of mean X. If J is a stop­
ping trial for {Xn; n ≥ 1} and if E [J] < ∞, then the 
sum SJ = X1 + X2 + · · · + XJ at the stopping trial J
satisfies 

E [SJ ] = XE [J] 

Prf: 

SJ = X1IJ≥1 + X2IJ≥2 + · · · + XnIJ n +≥ · · · 
�
�

 
  

E [SJ ] = E XnIJ≥n 

�
 

= E XnIJ n 
n n 

�
≥

�

The essence of the proof is to

�

 show that Xn and 
IJ≥n are independent. 
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To show that Xn and IJ n are independent, note ≥
that IJ≥n = 1 − IJ<n. Also IJ<n is a function of 
X1, . . . , Xn 1. Since the is− Xi are IID, Xn  independent 
of X1, . . . , Xn 1, and thus I− J<n, and thus of IJ≥n. 

This is surprising, since Xn is certainly not indepen­
dent of IJ=n, nor of IJ=n+1, etc. 

The resolution of this ‘paradox’ is that, given that 
J ≥ n (i.e., that stopping has not occured before 
trial n), the trial at which stopping occurs depends 
on Xn, but whether or not J ≥ n occurs depends 
only on X1, . . . , Xn . −1

Now we can finish the proof. 
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In many applications, this gives us one equation 

in two quantities neither of which is known. Fre­

quently, E [SJ ] is easy to find and this solves for E [J]. 

The following example shows, among other things, 

why E [J] < ∞ is required for Wald’s equality. 
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Stop when you’re ahead 

Consider tossing a coin with probability of heads 
equal to p. $1 is bet on each toss and you win on 
heads, lose on tails. You stop when your winnings 
reach $1. 

If p > 1/2, your winnings (in the absence of stop­
ping) would grow without bound, passing through 
1, so J must be a rv. SJ = 1 WP1, so E [SJ ] = 1. 
Thus, Wald says that E [J] = 1/X = 1 . Let’s 2p 1
verify this in another way. 

−

Note that J = 1 with probability p. If J > 1, i.e., if 
S1 = −1, then the only way to reach Sn = 1 is to 
go from S1 = −1 to Sm = 0 for some m (requiring 
J steps on average); J more steps on average then 
gets to 1. Thus J = 1 + (1 − p)2J = 1 . 2p−1
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Finally consider p = 1/2. In the limit as p approaches 

1/2 from below, Pr{J < ∞} = 1. We find other more 

convincing ways to see this later. However, as p 

approaches 1/2 from above, we see that E [J] = ∞. 

Wald’s equality does not hold here, since E [J] = ∞, 

and in fact does not make sense since X = 0. 

However, you make your $1 with probability 1 in 

a fair game and can continue to repeat the same 

feat. 

It takes an infinite time, however, and requires ac­

cess to an infinite capital. 
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Next consider p < 1/2. It is still possible to win and 

stop (for example, J = 1 with probability p and J = 3 

with probability 2p (1−p)). It is also possible to head 

South forever. 

Let θ = Pr{J < ∞}. Note that Pr{J = 1} = p. Given 

that J > 1, i.e., that S1 = −1, the event {J < ∞}
requires that Sm − S1 = 1 for some m, and then 

Sn − Sm = 1 for some n > m. Each of these are 

independent events of probability θ, so 

θ = p + (1 − p) 2 θ

There are two solutions, θ = p/(1 − p) and θ = 1, 
which is impossible. Thus J is defective and Wald’s 

equation is inapplicable. 
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