6.262: Discrete Stochastic Processes 3/14/11
Lecture 12 : Renewal rewards, stopping trials, and
Wald’s equality
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Stopping trials for stochastic processes

Wald’s equality

Stop when you’re ahead

Theorem: If {Z,; n > 1} converges to « WP1, (i.e.,
Pr{w : lim,(Zn(w)—a) =0} = 1), and f(z) is continu-
ous at a. Then Pr{w :limy, f(Zn(w)) = a} = 1.

For a renewal process with inter-renewals X;, 0 <
X < oo, Pr{w: limn(LSn(w)-X) = o} = 1)
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For renewal processes, n/S, and N(t)/t are related
by
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The strong law for renewal processes follows from
this relation between n/S, and N(t)/t.

Theorem: For a renewal process with X < oo,
Pr{w ©lim N(t,w)/t = 1/7} = 1.
t—oo

This says that the rate of renewals over the infinite
time horizon (i.e., lim; N(t)/t) is 1/X WP1.

This also implies the weak law for renewals,
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Review of residual life

Def: The residual life Y(¢) of a renewal process at
time t is the remaining time until the next renewal,
i.e., Y(t) - SN(t)—'—l —t.

Residual life is a random process; for each sample
point w, Y (t,w) is a sample function.
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Going to the limit t — oo

N(t 1
Xiz(w) _ 1 (tw)+

t X2
<[ Ywa < Y Xi(w)
2t t Jo = ot

N(t,w) 2
1 gt o Xf(w) Nt w)
PG
E[x?]

2E[X]

This is infinite if E[XQ] — co. Think of example
where px(e) =1 —¢, px(1l/e) =e.

Similar examples: Age Z(t) = t— Sy and duration,
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Time-averages for renewal rewards

Residual life, age, and duration are examples of as-
signing rewards to renewal processes.

The reward R(t) at any time ¢t is restricted to be a
function of the inter-renewal period containing t.

In simplest form, R(t) is restricted to be a function
R(Z(t), X(t)).

The time-average for a sample path of R(t) is found
by analogy to residual life. Start with the nth inter-
renewal interval.
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Interval 1 goes from 0 to S;, with Z(¢t) = t. For
interval n, Z(t) =t-S,,_1, i.e., Sn(t) = Sn—1-
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This is a function only of the rv X,,. Thus
E[Ry] = /O:Oo /m:o R(z,x) dz dF x(x).
Assuming that this expectation exists,
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Example: Suppose we want to find the £.th moment
of the age.

Then R(Z(t), X (t)) = Z*(t). Thus
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Stopping trials for stochastic processes

It is often important to analyze the initial segment
of a stochastic process, but rather than investigat-
ing the interval (0,t] for a fixed ¢, we want to inves-
tigate (0,t] where ¢ is selected by the sample path
up until ¢.

It is somewhat tricky to formalize this, since ¢t be-
comes a rv which is a function of {X(¢); 7 <t}. This

approach seems circular, so we have to be careful.

We consider only discrete-time processes {X;;i > 1}.
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Let J be a positive integer rv that describes when
a sequence X1, Xo,..., is to be stopped.

At trial 1, X;(w) is observed and a decision is made,
based on X;(w), whether or not to stop. If we stop,
J(w)=1

At trial 2 (if J(w) # 1), Xo(w) is observed and a
decision is made, based on X;(w), X>(w), whether
or not to stop. If we stop, J(w) = 2.

At trial 3 (if J(w) # 1,2), X3(w) is observed and
a decision is made, based on X;(w),X>(w), X3(w),
whether or not to stop. If we stop, J(w) = 3, etc.

At each trial n (if stopping has not yet occurred),
X, is observed and a decision (based on X;...,Xy)
is made; if we stop, then J(w) = n.
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Def: A stopping trial (or stopping time) J for {X,,; n >
1}, is a positive integer-valued rv such that for each

n > 1, the indicator rv I,;_,, is a function of

{X1,X5,...,Xn}.

A possibly defective stopping trial is the same ex-
cept that J might be defective.

We visualize ‘conducting’ successive trials X, Xo,...,
until some n at which the event {J = n} occurs; fur-
ther trials then cease. It is simpler conceptually to
visualize stopping the observation of trials after the
stopping trial, but continuing to conduct trials.

Since J is a (possibly defective) rv, the events {J =
1},{J = 2},... are disjoint.
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Example 1: A gambler goes to a casino and gambles
until broke.

Example 2: Flip a coin until 10 successive heads
appear.

Example 3: Test an hypothesis with repeated tri-
als until one or the other hypothesis is sufficiently
probable a posteriori.

Example 4: Observe successive renewals in a re-
newal process until S, > 100.
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Suppose the rv's X; in a process {X,; n > 1 have
a finite number of possible sample values. Then
any (possibly defective) stopping trial J can be rep-
resented as a rooted tree where the trial at which
each sample path stops is represented by a terminal
node.

Example: X is binary and stopping occurs when the
pattern (1, 0) first occurs.
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Wald’s equality

Theorem (Wald’s equality) Let {X,;n > 1} be a se-
quence of IID rv’s, each of mean X. If J is a stop-
ping trial for {X,; n > 1} and if E[J] < oo, then the
sum S;= X; + Xo +---+ X; at the stopping trial J
satisfies

E[S)] = XE[J]
Prf:

Sy=X1lj>1+ Xolyso+ -+ Xnllj>y + -+

E[S;]=E

n n

The essence of the proof is to show that X, and
Iy>, are independent.
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To show that X, and I;>, are independent, note
that I;>, = 1-1;,,. Also I;., is a function of
X1,...,Xn—1. Since the X; are IID, X, is independent
of X4,...,X,_1, and thus I;.,, and thus of ;.

This is surprising, since X, is certainly not indepen-
dent of [;—,, nor of I[;—,,, etc.

The resolution of this ‘paradox’ is that, given that
J > n (i.e., that stopping has not occured before
trial n), the trial at which stopping occurs depends
on X,, but whether or not J > n occurs depends
only on Xq,...,X,_1.

Now we can finish the proof.
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E(S;] = ;E[Xn]l J2n]
= ;E[XR]E[H J>n]
= XY E[[y5]
— YiPr{JZn} = XE[J]

In many applications, this gives us one equation
in two quantities neither of which is known. Fre-
quently, E[S;] is easy to find and this solves for E[J].

The following example shows, among other things,
why E[J] < oo is required for Wald’s equality.

17

Stop when you’'re ahead

Consider tossing a coin with probability of heads
equal to p. $1 is bet on each toss and you win on
heads, lose on tails. You stop when your winnings
reach $1.

If p > 1/2, your winnings (in the absence of stop-
ping) would grow without bound, passing through
1, so J must be arv. S; =1 WP1, so E[S;] = 1.
Thus, Wald says that E[J] = 1/X = Tl_l Let's
verify this in another way.

Note that J = 1 with probability p. If J > 1, i.e., if
S1 = —1, then the only way to reach S, = 1 is to
go from S; = —1 to S, = 0 for some m (requiring
J steps on average); J more steps on average then
getsto 1. Thus J=14 (1 —p)2J = Tl—l'
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Next consider p < 1/2. It is still possible to win and
stop (for example, J = 1 with probability p and J =3
with probability p2(1—p)). It is also possible to head
South forever.

Let 6 = Pr{J < oco}. Note that Pr{J =1} = p. Given
that J > 1, i.e., that S; = —1, the event {J < oo}
requires that S,, — S = 1 for some m, and then
Sn —Sm = 1 for some n > m. Each of these are
independent events of probability 6, so

0 =p+ (1—p)b?

There are two solutions, 6§ = p/(1 —p) and 6 = 1,
which is impossible. Thus J is defective and Wald’s
equation is inapplicable.
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Finally consider p = 1/2. In the limit as p approaches
1/2 from below, Pr{J < co} = 1. We find other more
convincing ways to see this later. However, as p
approaches 1/2 from above, we see that E[J] = .

Wald’s equality does not hold here, since E[J] = o,
and in fact does not make sense since X = 0.

However, you make your $1 with probability 1 in
a fair game and can continue to repeat the same

feat.

It takes an infinite time, however, and requires ac-
cess to an infinite capital.
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