
Review of Poisson processes 

A Poisson process is an arrival process with IID 

exponentially-distributed interarrival times. 

It can be represented by its arrival epochs, S1, S2, . . . , 

or by its interarrival times, X1, X2, . . . or by its count­

ing process, {N(t); t > 0}, where 

� 

� {Sn ≤ t} = {N(t) ≥ n} 

� N(t) = n for Sn ≤ t < Sn+1 
X1 ✲

X2 

✛ 

✲

X3 
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Outline: 

•	 Review of Poisson processes 

•	 Combining independent Poisson processes 

•	 Splitting a Poisson process 

•	 Non-homogeneous Poisson processes


• Conditional arrival densities
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For any set of times, 0 < t1 < t2 < · · · tk, the Poisson 

process increments, {N(t); 0<t≤t1}, {N (t1, t); t1<t≤t2}, 

. . . , {N�(tk−1, t); tk  −1<t≤tk} are stationa

pendent Poisson counting processes 

�

ry and inde­

(over their given 

intervals). Also, 

(λt)n exp( λt) 
p ( )(n) = N t

−
n! 

This is a function only of the mean λt. By the 

stationary and ind. inc. property, we know that 

N(t1) and N�(t1, t) are independent. They are also 

Poisson and their sum, N(t), is Poisson. In general, 

sums of independent Poisson rv’s are Poisson, with 

the means adding. 
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� 

� 

� N(t) = n for Sn ≤ t < Sn+1 
X1 ✲

X2

✛ 

✲

Z 
✛ X3 ✲

✛ 

✲

The interarrival times Xi of a Poisson process are 
memoryless, i.e., for x, t > 0, 

Pr{Xi > t + x | Xi > t  = Pr Xi > x  = exp( λx) 
✛ 

} { } −

✻N (t) 

t 
0 S1 S2 S3 

Given N(t) = n and Sn = τ, we have Xn+1 > t − τ. 
The interval Z = X

�
n+1 − (t − τ). 

 
Pr Z > z | N(t), SN(t) 

�
= exp(−λz) 

Z is independent of {N(τ); τ ≤ t}; Z is the first in­
terarrival of the Poisson process {N(t�)−  N(t); t� > t}; 
{N(t�)−N(t); t� > t} is independent of {N(τ); τ ≤ t}. 
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Combining independent Poisson processes 

Two Poisson processes {N1(t); t>0} and {N2(t); t>0}
are independent if for all t1, . . . , tn, the rv’s N1(t1), 
. . . , N1(tn) are independent of N2(t1), . . . , , N2(tn). 

Thm: if {N1(t); t>0} and {N2(t); t>0} are indepen­

dent Poisson processes of rates λ1 and λ2 and N(t) = 

N1(t)+ N2(t) for all t > 0, then {N(t); t>0} is a Pois­

son process of rate λ = λ1 + λ2. 

6 

Alternate definitions of Poisson process: (i.e., al­
ternate conditions which suffice to show that an 
arrival process is Poisson). 

Thm: If an arrival process has the stationary and 
independent increment properties and if N(t) has 
the Poisson PMF for given λ and all t > 0, then the 
process is Poisson. 

Thm: If an arrival process has the stationary and 
independent increment properties and satisfies the 
following incremental condition, then the process is 
Poisson. 

� � 


1 − λδ + o(δ) for n = 0 
Pr N�(t, t+δ) = n =
 λδ + o(δ) for n = 1 

 o(δ) for n ≥ 2 
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The idea is that in any increment (t, t+δ], 

N�(t, t+δ) = N�1(t, t+δ) + N�2(t, t+δ)

p
N� (1) = p

(t,t+δ) N� (1)p (0) 
1(t,t+δ) N�2(t,t+δ)

+ p
N

= [δ

� (0)p (1) 
1(t,t+δ) N2(t,t+δ)

λ1 + o(δ)][1

�

 − δλ2 + o(δ)] 

+ [1 − δλ1 + o(δ)][δλ2 + o(δ)] 

= δ(λ1 + λ2) + o(δ) 
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Similarly, N(t, t+δ) = 0 if both N1(t, t+δ) = 0 and
N�2(t, t+δ) =

�

0. Thus

�

Pr
�
N�

 
(t, t+δ) = 0

�
= [1 − (λ1 + λ2)δ + o(δ)] 

It is much cleaner analytically to use the Poisson 
distribution directly. Since N�1(t, t+δ) and N2(t, t+δ)
are independent and Poisson, 

�

N�(t, t+δ) = N

is rv

�
1(t, t+δ) + N

 a Poisson  with mean λδ. 

�
2(t, t+δ) 

The sum of many small independent arrival pro­
cesses tends to be close to Poisson even if the small 
processes are not. In a sense, the independence 
between the processes overcomes the dependence 
between successive arrivals in each process. 
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Splitting a Poisson process 

N1(t) ✲ ✟ ✟✟✟✟
rate λ1 = pλ

N(t) ✟ p
✟✲✟❍

rate λ ❍❍❍❍1❍−p
❍❍ N2(t) ✲ 

rate λ2 = (1−p)λ 

Each arrival is switched to {N1(t); t > 0} with prob­
ability p and otherwise goes to {N2(t); t > 0}. View 
the switch as a Bernoulli process independent of 
{N(t); t > 0}. A p biased coin is flipped indepen­
dently at each arrival. 

Each new process clearly has the stationary and 
independent increment property and each satisfies 
the small increment property. Thus each is Poisson. 
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The small increment property doesn’t make it clear 
that the split processes are independent. For in­
dependence, both processes must sometimes have 
arrivals in the same small increment. Independence 
is hidden in the o(δ) terms. See text. 

Combining and splitting are often done together. 
First one views separate independent Poisson pro­
cesses as a combined process. Then it is split again 
with binary choices between processes. 

Example: Consider a last-come first-serve queue 
with Poisson arrivals, rate λ and independent expo­
nential services, rate µ. A new arrival starts service 
immediately, but is interrupted if a new arrival oc­
curs before service completion. 
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View services as a Poisson process. We can either 

ignore this process when there is nothing to serve, 

or visualize a low priority task that is served at rate 

µ when there is nothing else to do. The arrival 

process plus the service process is Poisson, rate λ + 

µ. 

The probability an arrival completes service before 

being interrupted is µ/(λ + µ). 

Given that you are interrupted, what is the proba­

bility of no further interruption? Two services (the 

interruping job and you) must finish before the next 
2 

interruption, so Answer: µ
(λ+µ)2 . 
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Non-homogeneous Poisson processes 

Consider optical transmission, where an optical stream 
of photons is modulated by variable power. The 
photon stream is reasonably modelled as a Poisson 
process, and the modulation converts the steady 
photon rate into a variable rate, say λ(t). 

We model the number of photons in any interval 
(t, t+δ] as a Poisson random variable whose rate pa­
rameter over (t, t+δ] is the average photon rate over 
(t, t+δ] times δ. 

In the small increment model, we have 

� � 


1 − δλ(t) + o(δ) for n = 0 
Pr N�(t, t+δ) = n =
 λ(t)δ + o(δ) for n = 1 

 o(δ) for n ≥ 2 
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We can use this small increment model to see that 

the number of arrivals in each increment is Poisson 

with 

[
Pr

�
�

 m(t, τ)]n exp[ m(t, τ )]
N(t, τ) = n

�
=

� −
n! 

where 

�

� 
�

τ 
m(t, τ) = λ(u) du.

t 

Combining and splitting non-homogeneous processes 

still works as in the homogeneous case, but the in­

dependent exponential interarrivals doesn’t work. 

We now return to homogeneous Poisson processes. 
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Conditional arrival densities 

There are many interesting and useful results about 
the increment (0, t] of a Poisson process conditional 
on N(t). First condition on N(t) = 1. 

✲ δ✛ 

0 s1 t 

p ( )(0) N s p (1) p (0) 
1 N(s ,s +δ Nf 1 1 ) (s1+δ,t)

S1|N(t)(s1|1) = lim 
δ→0 

�
δp (1) N(t)

−λs1 −λδ −λ(t−s1−δ) 

�

e λδe e 1 
= = 

δλte−λt t 
The important point is that this does not depend 
on s1, i.e., it is uniform over (0, t]. 
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Next consider N(t) = 2. 

✲ δ✛ ✲ δ✛ 

0 s1 s2 t 

e−λs1λδe−λδe−λ(s2−s1−δ)λδe−λδe−λ(t−s2−δ) 
f(s1s2|2) = lim 

δ δ2pN( (2)t)  
2 

= 
t2 

Again, this does not depend on s1, s2, or λ for 0 < 
s1 < s2 < t, i.e., it is uniform over the given region 
of s1, s2. 

We can do the same thing for N(t) = n for arbitrary 
n. Note that the exponents above always sum to 
λt. 
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✲ δ✛ ✲ δ✛ ✲ δ✛ 

0 s1 s2 s3 t 

(  δλ)n
( exp( t

f n) λ )
�(n) (�s |n) = lim
S |N(t)

−
δ→0 δnpN(t)(n) 

n! 
= 

tn 

This is ‘uniform’ over 0 < s1 < · · · < sn < t.

This is a uniform n dimensional probability density 
over the volume tn/n! corresponding to the con­
straint region 0 < s1 < · · · < sn < t.

How did this derivation ‘know’ that the volume of 
s1, . . . , sn over 0 < s1 < · · · < sn < t is n!/tn?

16 



As an example of using order statistics, consider 

finding the distribution function of S1 conditional on 

N(t) = n. Viewing S1 as the minimum of U1, . . . , Un, 

we have 
�  

n 
Pr min Ui > s1

1≤i≤n

�

= 
�

Pr{Ui > s
i=1 

}

�n 
�

s1
� �

s n 
− − 1= 1  = 1  

i=1 t t
s n 1

�

Fc (s n) = 1  for s  t S1|N(t) 1|
�
−

�
1 

t 
≤

E [S1 | N(t) = n] can be found by integration, 

t 
E [S1 | N(t) = n] = 

n + 1 
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To see why n! appears in this uniform density, let 
U1, . . . , Un be n IID rv’s, each uniform over (0, t]. Let 
S1, . . . , S � n

n be the order statistics for U , i.e., 

S1 = min( thU1, . . . Un), . . .  , Sk = k smallest, . . . 

The region of volume tn where the density of U� n 

is nonzero partitions into n! regions, one in which 
u1 < u2 < · · · < un and one for each other ordering 
of u1, . . . , un. From symmetry, each volume is the 
same, and thus each is tn/n!. 

The region where S�n is nonzero is one of these 
partitions, and thus also has volume tn/n!. 

Since S�n has the same density, whether it is the 
conditional density of n arrival epochs given N(t) = n 
or the order statistics of n uniform rv’s, we can use 
results about either for the other. 
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 XN
∗ = t (t)+1 − SN(t) 

x1✛ ✲ x2✛ ✲ x∗3 
✛ ✲ 

0 s1 s2 t 

f(  x , x2|N(t)) = 2 2
1 /t for x1, x2, x3

∗ > 0; x1+x2+x∗3 = t

From symmetry, any 2 of the variables X1, X2, X3
∗

can replace X1, X2 above. 

Also, since X1 = S1, X1 has density and expected 
value 

(
� 2

c x1
�  

 F xX1|N(t) 1|2) = 1 − 
t 

t 
E [X1 | N(t)=2] = . 

3 
we see that X2 and X∗ can be substituted for X1 in 3
the�  above formulas.
E X1+X2+X3

∗
�  As a sanity check, note that 
= t 
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Return to N(t) = 2 and look at f (X x , x 2). 
1X2|N(t) 1 2|

s2 

� 
� 

� 
� 

� 
� 

� 
� 

� 
� 

� 
� 

❅ 
❅ 

❅ 
❅ 

❅ 
❅ 

❅ 
❅ 

❅ 
❅ 

❅ 
❅ 

❅ 
❅❅❘ 

x2 

s1 x1 

Note that the area in the s1, s2 space where 0 < s1 < 
 s2 <  is 2 2t t /2, explaining why the density is 2/t . 

Note that a 2 δ box in the s1, s2 space maps into a 

parallelepided of the same area in the x1, x2 space. 

The area in the x1, x2 space where 0 < x1 + x2 < t is 

again 2t /2 and f( 2x1, x2|N(t)=2) = 2  /t . 
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This extends to N(t) = n for arbitrary n. 
�

x n 1f ( )(x1|n) = 1 − X1|N t t 
t 

�

E [X1 | N(t)=n] = . 
n + 1 

This relation also applies to X∗ = t − Sn+1 N(t)

x n 
f  ( )(x|n) = 

�
1  Xn

∗
+1|N t −

t 
t 

�

E 
�  
Xn
∗    +1 | N(t)=n

�
= .

n + 1 

�
 

� �∞  t (λt)ne−λt
E X∗ = N(t)+1 n+1 n! n=0 

�∞ ( +1  λt)n e−λt 1 − e−λt
= = 

λ(n+1)! λ n=0 
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Paradox: The mean interarrival time for a Poisson 

process is 1/λ. But the mean time from any given t 

to the next arrival is 1/λ and the mean time back to 

the previous arrival is (1/λ)(1−e−λt). Thus the mean 

length of the interval containing t is (1/λ)(2 − e−λt). 

This paradox will become clearer when we study 

renewals. A temporary half-intuitive explanation is 

to first choose a sample path for a Poisson process 

and then choose a uniform random value for t over 

some large interval far from 0. The larger inter-

arrival intervals occupy proportionally more of the 

overall interval than the smaller, so t is biased to lie 

in one of those larger intervals. 
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