
If the embedded chain of a MP is positive recurrent, 
then 

πj/νj M (t) 1 
pj = ; lim i = WP1

k πk/ν t
k

→∞ t k πk/νk 

where Mi

�

(t) is the sample-path average

�

 rate at which 
transitions occur WP1 and pj is the sample-path av­
erage fraction of time in state j WP1, independent of 
starting state. 

If 
�

k πk/νk = ∞, the transition rate Mi(t)/t → 0 and the 
process has no meaningful steady state. Otherwise 
the steady state uniquely satisfies 

  
pjνj = 

�
piqij; pj > 0; all j; 

�
pj = 1 

i j 

This says that rate in equals rate out for each state. 
For birth/death, pjqj,j+1 = pj+1qj+1,j. 
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For an irreducible process, if there is a solution to the 

equations 
 

pjνj = 
� 

 piqij; pj > 0; all j; 
�

pj = 1 
i j 

and if 
�

i νipi < ∞, then the embedded chain is positive 

recurrent and 

pjν   
j 1 

πj = � ; πi/νi = ( pjνj)
−

i piνi

�

i 

�

i 

If 
�

i νipi = ∞, then each πj = 0, the embedded chain 

is either transient or null-recurrent, and the notion of 

steady-state makes no sense. 
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Imbedded chain for hyperactive birth/death 
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✔. . . 
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✒✑
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✖✕
Same process in terms of {qij} 

Using  
p qj,j+1 = 3
j pj+1qj+1,j, we see that p

�
j+1 = pj, so 4

 
pj = (1/4) (3/4)j and pjνj = ∞. 

j 
If we truncate this process to k states, then 

1 3 k 3 j 1 2 k 2 k−j 

pj =

�
1 − 

� � �� �
; πj =

�
1 

4 4 4 3
−

�

3

� ��

3

�

�
� �

 
 

 1 
�

3
�k

��
3 k

pjν  1  
2

−
4 2

�  

j =
 − 1

�
 → ∞


j 
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Reversibility for Markov processes 

For any Markov chain in steady state, the backward 
transition probabilities P ∗ are defined as 

ij

πiPij
∗ = πjPji 

There is nothing mysterious here, just 

Pr
�    
Xn = j, Xn+1 = i

�
= Pr

�
Xn+1 = i Pr Xn =j|Xn+1=i

 
= Pr{Xn = j  

� �

}Pr Xn+1=i

�

|Xn =j

This also holds for the embedded chain

�

 of a Mark

�

ov 
process. 

✛ State i ✲✛ State j, rate ν ✲✛ 
j State k ✲ 

t1 t2 
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✛ State i ✲✛ State j, rate ν ✲✛ 
j State k ✲ 

t1 t2 

Moving right, after entering state j, the exit rate is νj, 

i.e., we exit in each δ with probability νjδ. The same 

holds moving left. 

That is, a Poisson process is clearly reversible from 

the incremental definition. 

Thus {πi} and {νi} are the same going left as going 

right 
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Note that the probability of having a (right) transition 

from state j to k in (t, t+δ) is pjqjkδ. Similarly, if q∗ is
kj 

the left-going process transition rate, the probability 

of having the same transition is pkq
∗ . Thus
kj

pjqjk = pkq
k

∗
j 

By fiddling equations, q∗ = ν P  . 
kj k k

∗
j

Def: A MP is reversible if q∗ = qij for all  i, j 
ij

Assuming positive recurrence and 
�

i πi/νi < ∞, the MP 

process is reversible if and only if the embedded chain 

is. 

7 

The guessing theorem: Suppose a MP is irreducible 

and {pi} is a set of probabilities that satisfies piqij = 

pjqji for all i, j and satisfies 
�

i piνi < ∞. 

Then (1), pi > 0 for all i, (2), pi is the sample-path 

fraction of time in state i WP1, (3), the process is 

reversible, and (4), the embedded chain is positive 

recurrent. 

Useful application: All birth/death processes with 
�

j pjνj < 

∞ are reversible. Similarly, if the Markov graph is a 

tree with 
�

j pjνj < ∞, the process is reversible. 
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✉  

✉ a2 ✉d1 

✉
a3 d2 

  ✉  

a1 d3 

✉
a4 

Right moving

✉ 

 (forward) M/M/1 pro

✉d4 
 

cess 

✉ ✉ 

✉d3 a4 ✉d2 a3 
  ✉ ✉ 

✉d4 a2 d1 a1
  

Left moving (backward) M/M/1

✉
 process 

Burke’s thm: Given an M/M/1 queue in steady-state 

with (arrival rate) λ < µ (departure rate), 

(1) Departure process is Poisson with rate λ 

(2) State X(t) is independent of departures before t 

(3) For FCFS, a customer’s arrival time, given its de­

parture at t, is independent of departures before t. 
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✉ 

✉ a2 d1 

✉ 

a3 d2 
 t 
a1 

✉ ✉ ✉ 

✉d3 a4 d4 
 ✉ 

✉ 

d3 a4 d2 

✉ 

a3 
 t 

d4 

✉ ✉ ✉  

a2 

✉
d1 a1

  ✉ ✉

A departure at t in (right-moving) sample path is an 
arrival in the M/M/1 (left-moving) sample path. 

For FCFS left-moving process, departure time of ar­
rival at t depends on arrivals (and their service req.) 
to the right of t; independent of arrivals to left. 

For corresponding (right-moving) process, the arrival 
time of that departure is independent of departures 
before t. 
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M/M/1 M/M/1
Poisson 

λ ✲ λ ✲ λ ✲ 

µ1 µ2 

Consider tandem M/M/1 queues. Departures from 
first are Poisson with rate λ. Assume service times 
at rates µ1 and µ2, independent from queue to queue 
and independent of arrivals at each. 

Arrivals at queue 2 are Poisson at rate λ by Burke 
and are independent of service times at 2. Thus the 
second queue is M/M/1. 

The states of the two systems are independent and 
the time of a customer in system 1 is independent of 
that in 2. 
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Random walks 

Def: Let {Xi; i ≥ 1} be a sequence of IID rv’s, and let 
Sn = X1 + X2 + · · · + Xn for n  1. The integer-time 
stochastic process {Sn; n ≥ 1} 

≥
is called a random walk, 

or, specifically, the random walk based on {Xi; i ≥ 1}. 

We are used to sums of IID rv’s, but here the interest 
is in the process. We ask such questions as: 

1) Threshold crossing: For given α > 0, what is the 
probability that Sn ≥ α for at least one n 

 
≥ 1; what 

is the smallest n for which this crossing happens; and 
what is the overshoot Sn − α? 

2) Two thresholds: For given α > 0, β < 0, what is the 
probability that {Sn; n 

      
≥ 1 crosses α before it crosses 

β, and what is the n at which the first such crossing 
occurs? 
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Simple random walks 

A random walk (RW) {Sn; n ≥ 1}, Sn = X1 + · · · + Xn is
simple if Xn is binary with pX(1) = 1, pX(−1) = q = 1−p. 
This is just a scaling variation on a Bernoulli process. 
The probability that Xi = 1 for m out of n trials is 

n! 
Pr{ m n m

Sn = 2m − n} = p (1  p) −
. 

m!(n 
−

− m)! 
Viewed as a Markov chain, 

p ✓✏ 
p ✓✏ 

p ✓✏ 
p p 

③ −  ③ ③
2

 
q

② −1② 0 ②

✗
1  

✔
 

 = 1    
✒✑

q − p
✒✑

q
✒✑

q
✖✕

q

As in ‘stop when you’re ahead’ 

Pr 


 
 �∞  
 k 

p

 {Sn ≥ k}



 =





� �

if p ≤ 1/2.


n=1

 1 − p
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These threshold-crossing problems are important in 
studying overflow in queues, errors in digital commu­
nication systems, hypothesis testing, ruin and other 
catastrophes, etc. 

In many of the important applications, the relevant 
probabilities are very small and the problems are known 
as large deviation problems. 

Moment generating functions and their use in upper 
bounds on these small probabilities are important here. 

We start with a brief discussion of 3 simple cases: sim­
ple random walks, integer random walks, and renewal 
processes. 
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S5 ✈ 

S5 

S4 

S3 

S2 

S1 

time Sn α 

Walk Sn T
S ✈ rial n

4 
α 

 

✉

✉ 

✉ 

✉
 

S
S 3

2 ✈ ✈
N(t) 

S1 ✈ ✉ 

Trial n 

Integer RW’s (where X is an integer rv) are simi­
lar. An integer RW can also be modeled as a Markov 
chain, but there might be an overshoot when crossing 
a treshold and the analysis is much harder. 

Renewal processes are also special cases of random 
walks where X is a positive rv. When sketching sample 
paths, the axes are usually reversed from RP to RW. 
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✔ ✗ 

✕✔ 

✕ 

s2✛ x ✲✛3  y3 

✖✗ 

✖ 

✲ 

sArrivals 1 ✛ x ✲✛2  w ✲✛2  y ✲2  

0 Departures 
✛ x ✲✛1  w ✲✛ ✲1  y1  

wn is time in queue 
✛ y ✲0  

✛ x2 + w2 = w ✲ 1 + y1 

Queueing delay in a G/G/1 queue 

Let {Xi; i ≥ 1} be the (IID) interarrival intervals of a 
G/G/1 queue and let {Yi; i ≥ 1} be the (IID) service 
requirement of each. s3 

If arrival n is queued (e.g., arrival 2 above), then 

xn + wn = yn−1 + wn−1 

If arrival n sees an empty queue, then wn = 0. 
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Detection, decisions, & Hypothesis testing 

These are different names for the same thing. Given 
observations, a decision must be made between a set

of alternatives.


Here we consider only binary decisions, i.e., a choice

between two hypotheses.


Consider a sample space containing a rv H (the hy­

pothesis) with 2 possible values, H = 0 and H = 1.

The PMF for H, pH(0) = p0, pH(1) = p1, is called the a

priori probabilities of H.


Assume n observations, Y1, . . . , Yn are made. These are

IID conditional on H = 0 and IID conditional on H = 1.

Assume a pdf


n  
f
Y�

(�y  �) = f (yi �|    ). 
H

|
�

Y |H
i=1 

|

18 

wn = yn 1 − xn + wn 1 if wn 1 + yn 1 ≥ xn else − − − − wn = 0 

wn = max[wn 1 + yn 1 −  − − xn, 0] 

Since this is true for all sample paths, 

Wn = max[Wn +   0] −1 Yn−1 −Xn,

Define Un = Yn 1 − Xn. Then −

Wn = max[Wn 1 + Un, 0] −

Without the max, {Wn; n ≥ 1} would be a random walk 
based on {Ui; i ≥ 1}. 

With the max, {Wn; n ≥ 1} is like a random walk, but 
it resets to 0 every time it goes negative. The text 
restates this in an alternative manner. 
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By Baye’s law, 

p�f� (�y  �) 
Pr{ Y H

H=� | �y} = 
| |

.
p0f� (�y | 0) + p

Y | 1f
H Y�

(�y|H | 1) 

Comparing Pr{H=0 | �y} and Pr{H=1 | �y}, 

Pr{ =0 | } p f
H �y 0 Y�

(�y |H | 0) 
= . 

Pr{H=1 | �y} p1f� (�y 
Y |H | 1) 

The probability that H = � is the correct hypothesis,  
given the observation, is Pr

�
H=� | Y�

�
. Thus we maxi­

mize the a posteriori probability of cho�osing correctly  
by choosing the maximum over � of Pr H=� | Y� . This 

is called the MAP rule (maximum a posteriori 

�

proba­

bility). It requires knowing p0 and p1. 
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